Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Reeb graphs of circle-valued functions: A survey and basic facts
  • Strona domowa
  • /
  • Reeb graphs of circle-valued functions: A survey and basic facts
  1. Strona domowa /
  2. Archiwum /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Reeb graphs of circle-valued functions: A survey and basic facts

Autor

  • Irina Gelbukh https://orcid.org/0000-0001-7295-5752

DOI:

https://doi.org/10.12775/TMNA.2022.023

Słowa kluczowe

Reeb graph, circle-valued function, null homotopy, Morse function, cycle rank

Abstrakt

The Reeb graph of a circle-valued function is a topological space obtained by contracting connected components of level sets (preimages of points) to points. For some smooth functions, the Reeb graph has the structure of a finite graph. This notion finds numerous applications in the theory of dynamical systems, as well as in the topological classification of circle-valued functions and the study of their homotopy properties. However, important theoretical facts on the topological properties of the Reeb graphs of circle-valued functions are scattered across numerous papers on different topics, according to the specific needs of the corresponding application. In this paper, we systematize the existing results on the Reeb graphs of circle-valued functions and generalize some of them to wider classes of functions or spaces. We also show how some results can be carried out from real-valued functions. Finally, we adapt some facts from the theory of foliations to the Reeb graphs of circle-valued functions. In particular, we analyze the cycle rank of the Reeb graph and address the problem of realization of a finite graph as a Reeb graph.

Bibliografia

E.B. Batista, J.C.F. Costa and I.S. Meza-Sarmiento, Topological classification of circle-valued simple Morse–Bott functions, J. Singul. 17 (2018), 388–402, DOI: 10.5427/jsing.2018.17q.

E.B. Batista, J.C.F. Costa and J.J. Nuño-Ballesteros, Loops in generalized Reeb graphs associated to stable circle-valued functions, J. Singul. 22 (2020), 104–113, DOI: 10.5427/jsing.2020.22g.

S. Calcut, R.E. Gompf and J.D. McCarthy, On fundamental groups of quotient spaces, Topology Appl. 159 (2012), 322–330, DOI: 10.1016/j.topol.2011.09.038.

K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci, Loops in Reeb graphs of 2-manifolds, Discrete Comput. Geom. 32 (2004), 231–244, DOI: 10.1145/777792.777844.

K.A. de Rezende, G.G.E. Ledesma, O. Manzoli-Neto and G.M. Vago, Lyapunov graphs for circle valued functions, Topology Appl. 245 (2018), 62–91, DOI: 10.1016/j.topol.2018.06.008.

H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, 2010, DOI: 10.1090/mbk/069.

B. Feshchenko, Deformations of circle-valued Morse functions on 2-torus, Proc. Int. Geom. Cent. 14 (2021), 117–136, DOI: 10.15673/tmgc.v14i2.2008.

I. Gelbukh, On the structure of a Morse form foliation, Czechoslovak Math. J. 59 (2009), 207–220, DOI: 10.1007/s10587-009-0015-5.

I. Gelbukh, Structure of a Morse form foliation on a closed surface in terms of genus, Differential Geom. Appl. 29 (2011), 473–492, DOI: 10.1016/j.difgeo.2011.04.029.

I. Gelbukh, Close cohomologous Morse forms with compact leaves, Czechoslovak Math. J. 63 (2013), 515–528, DOI: 10.1007/s10587-013-0034-0.

I. Gelbukh, The number of split points of a Morse form and the structure of its foliation, Math. Slovaca 63 (2013), 331–348, DOI: 10.2478/s12175-013-0101-x.

I. Gelbukh, Co-rank and Betti number of a group, Czechoslovak Math. J. 65 (2015), 565–567, DOI: 10.1007/s10587-015-0195-0.

I. Gelbukh, The co-rank of the fundamental group: The direct product, the first Betti number, and the topology of foliations, Math. Slovaca 67 (2017), 645–656, DOI: 10.1515/ms-2016-0298.

I. Gelbukh, Loops in Reeb graphs of n-manifolds, Discrete Comput. Geom. 59 (2018), 843–863, DOI: 10.1007/s00454-017-9957-9.

I. Gelbukh, Approximation of metric spaces by Reeb graphs: Cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifolds, Filomat 33 (2019), 2031–2049, DOI: 10.2298/FIL1907031G.

I. Gelbukh, A finite graph is homeomorphic to the Reeb graph of a Morse–Bott function, Math. Slovaca 71 (2021) 757–772, DOI: 10.1515/ms-2021-0018.

I. Gelbukh, A finite graph is the Reeb graph of a circle-valued Morse function, Filomat 37 (2023), no. 11, 3575–3590, DOI: 10.2298/FIL2311575G.

A. Hatcher, Algebraic Topology, Cambridge University Press, 2001, DOI: 10.1017/S0013091503214620.

J.T. Hiratuka and O. Saeki, Triangulating Stein factorizations of generic maps and Euler characteristic formulas, RIMS Kôyûroku Bessatsu B38 (2013), 61–89.

W. Jaco, Geometric realizations for free quotients, J. Aust. Math. Soc. 14 (1972), 411–418, DOI: 10.1017/S1446788700011034.

A. Kravchenko and S. Maksymenko, Automorphisms of Kronrod–Reeb graphs of Morse functions on compact surfaces, Eur. J. Math. 6 (2020), 114–131, DOI: 10.1007/s40879019-00379-8.

I. Kuznietsova and S. Maksymenko, Homotopy properties of smooth functions on the Möbius band, Proc. Int. Geom. Cent. 12 (2019), 1–29, DOI: 10.15673/tmgc.v12i3.1488.

C.J. Leininger and A.W. Reid, The co-rank conjecture for 3-manifold groups, Algebr. Geom. Topol. 2 (2002), 37–50, DOI: 10.2140/agt.2002.2.37.

D.V. Lima, O.M. Neto, K.A. de Rezende and M.R. da Silveira, Cancellations for circle-valued Morse functions via spectral sequences, Topol. Methods Nonlinear Anal. 51 (2018), 259–311, DOI: 10.12775/TMNA.2017.047.

R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Mathematics, Springer, Berlin, 2001, DOI: 10.1007/978-3-642-61896-3.

S. Maksymenko, Deformations of circle-valued Morse functions on surfaces, Ukrainian Math. J. 62 (2011), 1577–1584, DOI: 10.1007/s11253-011-0450-y.

S. Maksymenko, Deformations of functions on surfaces by isotopic to the identity diffeomorphisms, Topology Appl. 282 (2020), DOI: 10.1016/j.topol.2020.107312.

J. Martı́nez-Alfaro, I.S. Meza-Sarmiento and R. Oliveira, Topological classification of simple Morse–Bott functions on surfaces, Real and Complex Singularities, no. 675, Contemporary Mathematics, AMS, 2016, pp. 165–179, DOI: 10.1090/conm/675/13590.

J. Martı́nez-Alfaro, I.S. Meza-Sarmiento and R.D.S. Oliveira, Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces, Topol. Methods Nonlinear Anal. 51 (2018), 183–213, DOI: 10.12775/TMNA.2017.051.

Y. Masumoto and O. Saeki, Smooth function on a manifold with given Reeb graph, Kyushu J. Math. 65 (2011), 75–84, DOI: 10.2206/kyushujm.65.75.

L.P. Michalak, Realization of a graph as the Reeb graph of a Morse function on a manifold, Topol. Methods Nonlinear Anal. 52 (2018), 749–762, DOI: 10.12775/TMNA.2018.029.

L.P. Michalak, Combinatorial modifications of Reeb graphs and the realization problem, Discrete Comput. Geom. 65 (2021), 1038–1060, DOI: 10.1007/s00454-020-00260-6.

E.K. Pedersen, Regular neighborhoods in topological manifolds, Michigan Math. J. 24 (1977), 177–183, DOI: 10.1307/mmj/1029001881.

G. Reeb, Sur les points singuliers d’une forme de Pfaff complétement intégrable ou d’une fonction numérique, C.R.A.S. Paris 222 (1946), 847–849.

O. Saeki, Reeb Graphs of Smooth Functions on Manifolds, RIMS Kôkyûroku Bessatsu 2156 (2020), 37–43.

O. Saeki, Reeb spaces of smooth functions on manifolds, Int. Math. Res. Not. 2022 (2022), no. 11, 8740–8768, DOI: 10.1093/imrn/rnaa301.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-03-04

Jak cytować

1.
GELBUKH, Irina. Reeb graphs of circle-valued functions: A survey and basic facts. Topological Methods in Nonlinear Analysis [online]. 4 marzec 2023, T. 61, nr 1, s. 59–81. [udostępniono 7.7.2025]. DOI 10.12775/TMNA.2022.023.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 61, No 1 (March 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Irina Gelbukh

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa