Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Irrationally elliptic closed characteristics on symmetric compact convex hypersurfaces in R^8
  • Home
  • /
  • Irrationally elliptic closed characteristics on symmetric compact convex hypersurfaces in R^8
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Irrationally elliptic closed characteristics on symmetric compact convex hypersurfaces in R^8

Authors

  • Wei Wang

DOI:

https://doi.org/10.12775/TMNA.2021.057

Keywords

Compact convex hypersurfaces, closed characteristics, Hamiltonian systems, Morse theory, index iteration theory

Abstract

Let $\Sigma$ be a $C^3$ compact symmetric convex hypersurface in $\mathbb{R}^{8}$. We prove that when $\Sigma$ carries exactly four geometrically distinct closed characteristics, then there are at least two irrationally elliptic closed characteristics on $\Sigma$.

References

M. Abreu and L. Macarini, Dynamical convexity and elliptic periodic orbits for Reeb flows, Math. Ann. 369 (2017), 331–386.

C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure. Appl. Math. 37 (1984), 207–253.

G. Dell’Antonio, B. D’Onofrio and I. Ekeland, Les systém hamiltoniens convexes et pairs ne sont pas ergodiques en general, C.R. Acad. Sci. Paris. Sér. I 315 (1992), 1413–1415.

H. Duan and H. Liu, Multiplicity and ellipticity of closed characteristics on compact star-shaped hypersurfaces in R2n , Calc. Var. Partial Differential Equations 56 (2017), art. 65, 30ṗp.

I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 19–78.

I. Ekeland, An index throry for periodic solutions of convex Hamiltonian systems, Proc. Sympos. Pure Math. 45 (1986), 395–423.

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer–Verlag, Berlin, 1990.

I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their closed trajectories, Comm. Math. Phys. 113 (1987), 419–467.

I. Ekeland and J. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math. 112 (1980), 283–319.

I. Ekeland and L. Lassoued, Multiplicité des trajectoires fermées d’un systéme hamiltonien sur une hypersurface d’energie convexe, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 1–29.

E. Fadell and P. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139–174.

J. Gutt and J. Kang, On the minimal number of periodic orbits on some hypersurfaces in R2n , Ann. Inst. Fourier (Grenoble) 66 (2016), 2485–2505.

D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology 8 (1969), 361–369.

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. 148 (1998), 197–289.

J. Horn, Beiträge zur Theorie der kleinen Schwingungen, Zeit. Math. Phys. 48 (1903), 400–434.

X. Hu and Y. Ou, Stability of closed characteristics on compact convex hypersurfaces in R2n , J. Fixed Point Theory Appl. 19 (2017), 585–600.

A. M. Liapounov, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse 9 (1907) 203–474; Russian original: Kharkov Math. Soc. (1892); Reedited: Princeton University Press, 1949; Reedited: Gabay, Paris 1989.

C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in R2n , Math. Ann. 323 (2002), 201–215.

H. Liu, Y. Long, W. Wang and P. Zhang, Symmetric closed characteristics on symmetric compact convex hypersurfaces in R8 , Commun. Math. Stat. 2 (2014), 393–411.

Y. Long, Maslov-type index, degenerate critical points and asymptotically linear Hamiltonian systems, Science in China. Ser. A 33 (1990), 1409–1419.

Y. Long, Hyperbolic closed characteristics on compact convex smooth hypersurfaces in R2n , J. Differential Equations 150 (1998), 227–249.

Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Adv. Math. 154 (2000), 76–131.

Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Math., vol. 207, Birkhäuser, Basel, 2002.

Y. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic Processes, Physics and Geometry (S. Albeverio et al., eds.), World Sci., 1990, pp. 528–563.

Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in R2n , Ann. of Math. 155 (2002), 317–368.

P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157–184.

A. Szulkin, Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. Soc. Math. France. 116 (1988), 171–197.

C. Viterbo, A new obstruction to embedding Lagrangian tori, Invent. Math. 100 (1990), 301–320.

W. Wang, Stability of closed characteristics on compact convex hypersurfaces in R6 , J. Eur. Math. Soc. 11 (2009), 575–596.

W. Wang, Irrationally elliptic closed characteristics on compact convex hypersurfaces in R6 , J. Funct. Anal. 267 (2014), 799–841.

W. Wang, Closed trajectories on symmetric convex Hamiltonian energy surfaces, Discrete Contin. Dyn. Syst. 32 (2012), 679–701.

W. Wang, Existence of closed characteristics on compact convex hypersurfaces in R2n , Calc. Var. Partial Differential Equations 55 (2016), art. 2, 25 pp.

W. Wang, Closed characteristics on compact convex hypersurfaces in R8 , Adv. Math. 297 (2016), 93–148.

W. Wang, X. Hu and Y. Long, Resonance identity, stability and multiplicity of closed characteristics on compact convex hypersurfaces, Duke Math. J. 139 (2007), 411–462.

A. Weinstein, Normal modules for nonlinear Hamiltonian systems, Invent. Math. 20 (1973), 45–57.

A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. 108 (1978), 507–518.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-03-04

How to Cite

1.
WANG, Wei. Irrationally elliptic closed characteristics on symmetric compact convex hypersurfaces in R^8. Topological Methods in Nonlinear Analysis. Online. 4 March 2023. Vol. 61, no. 1, pp. 361 - 381. [Accessed 8 July 2025]. DOI 10.12775/TMNA.2021.057.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Wei Wang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop