Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Maps of degree one, LS category and higher topological complexities
  • Home
  • /
  • Maps of degree one, LS category and higher topological complexities
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Maps of degree one, LS category and higher topological complexities

Authors

  • Yuli B. Rudyak
  • Soumen Sarkar

DOI:

https://doi.org/10.12775/TMNA.2021.051

Keywords

Lusternik-Schnirelmann category, sectional category, topological complexity

Abstract

In this paper, we study the relation between the Lusternik-Schnirelmann category and the topological complexity of two closed oriented manifolds connected by a degree one map.

References

J.F. Adams, Lectures on Exceptional Lie groups, (J.P. May, fireword; Z. Mahmud and M. Mimura, eds.) Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996, xiv+122 pp.

M. Arkowitz, Introduction to Homotopy Theory, Universitext, Springer, New York, 2011.

I. Basabe, J. González, Y.B. Rudyak and D. Tamaki, Higher topological complexity and its symmetrization, Algebr. Geom. Topology 14 (2014), 2103–2124.

M. Bayeh and S. Sarkar, Some aspects of equivariant LS-category, Topology Appl. 196 (2015), 133–154.

A. Borel, Sur l’homologie et la cohomologie des groupes de Lie compact connexes, Amer. J. Math. 76 (1954), 273–342.

W. Browder, Surgery on Simply-Connected Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65, Springer–Verlag, New York, Heidelberg, 1972.

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, vol. 103, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2003.

M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2.

A.N. Dranishnikov, The LS category of the product of lens spaces, Algebr. Geom. Topol. 15 (2015), no. 5, 2985–3010.

A.N. Dranishnikov, M. Katz and Y. Rudyak, Small values of the Lusternik–Schnirelman category for manifolds, Geom. Topol. 12 (2008), no. 3, 1711–1727.

A.N. Dranishnikov and Y. Rudyak, On the Berstein–Svarc theorem in dimension 2, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 2, 407–413.

A.N. Dranishnikov and R. Sadykov, On the LS-category and topological complexity of a connected sum, Proc. Amer. Math. Soc. 147 (2019), no. 5, 2235–2244.

A.N. Dranishnikov and J. Scott, Surgery approach to Rudyak’s conjecture, Topology Appl. 311 (2022), paper no. 107956, 7 pp.

E. Dyer, Cohomology Theories, Mathematics Lecture Note Series, W.A. Benjamin, Inc., New York, Amsterdam, 1969.

E. Fadell and S. Husseini, Category weight and Steenrod operations, Papers in honor of José Adem, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1–2, 151–161.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221.

M. Farber, Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zurich, 2008.

M. Farber and M. Grant, Robot motion planning, weights of cohomology classes, and cohomology operations, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3339–3349.

M. Grant, G. Lupton and J. Oprea, Spaces of topological complexity one, Homology Homotopy Appl. 15 (2013), no. 2, 73–81.

J. Hempel, 3-Manifolds, Ann. of Math. Studies, vol. 86, Princeton Univ. Press, Princeton, New Jersey, 1976.

N. Iwase and M. Mimura, L–S categories of simply-connected compact simple Lie groups of low rank, Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, 2001), Progr. Math., vol. 215, Birkhäuser, Basel, 2004, 199–212.

I. James, On category, in the sense of Lusternik–Schnirelmann, Topology 17 (1978), no. 4, 331–348.

I. James and J. Whitehead, The homotopy theory of sphere bundles over spheres I, Proc. London Math. Soc. (3) 4 (1954), 196–218.

M. Krasnosel’skı̆, On special coverings of a finite-dimensional sphere, Dokl. Akad. Nauk SSSR (N.S.) 103 (1955), 961–964 (in Russian).

M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), no. 3, 711–746.

Y.B. Rudyak, Some remarks on category weight, Preprint, University of Heidelberg, 1996.

Y.B. Rudyak, On Thom spectra, orientability, and cobordism (H. Miller, foreword), Springer Monographs in Mathematics, Springer–Verlag, Berlin, 1998.

Y.B. Rudyak, On category weight and its applications, Topology 38 (1999), no. 1, 37–55.

Y.B. Rudyak, On higher analogs of topological complexity, Topology Appl. 157 (2010), no. 5, 916–920; errata: Topology Appl. 157 (2010), 1118.

Y.B. Rudyak, Maps of degree 1 and Lusternik–Schnirelmann category, Topology Appl. 221 (2017), 225–230.

Y.B. Rudyak and J. Oprea, On the Lusternik–Schnirelmann category of symplectic manifolds and the Arnold conjecture, Math. Z. 230 (1999), no. 4, 673–678.

Y.B. Rudyak and S. Sarkar, Maps of degree one, relative LS category and higher topological complexities, arXiv: 2011.13531.

A.S. Schwarz (Švarc), The genus of a fiber space, Amer. Math. Soc. y Transl. 55 (1966), 49–140.

J. Strom, Essential category weight, Preprint, University of Wisconsin–Madison, 1997.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-03-04

How to Cite

1.
RUDYAK, Yuli B. and SARKAR, Soumen. Maps of degree one, LS category and higher topological complexities. Topological Methods in Nonlinear Analysis. Online. 4 March 2023. Vol. 61, no. 1, pp. 7 - 19. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2021.051.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Yuli B. Rudyak, Soumen Sarkar

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop