Equilibria of vortex type Hamiltonians on closed surfaces
DOI:
https://doi.org/10.12775/TMNA.2023.003Keywords
Point vortex Hamiltonian, point vortex equilibria, counter-rotating vortices, mean field equations, sinh-Poisson equation, blow-up solutionsAbstract
We prove the existence of critical points of vortex type Hamiltonians \[ H(p_1,\ldots, p_N) = \sum_{{i,j=1}\atop{i\ne j}} ^N \Gamma_i\Gamma_jG(p_i,p_j)+\Psi(p_1,\dots,p_N) \] on a closed Riemannian surface $(\Sigma,g)$ which is not homeomorphic to the sphere or the projective plane. Here $G$ denotes the Green function of the Laplace-Beltrami operator in $\Sigma$, $\Psi\colon \Sigma^N\to\mathbb{R}$ may be any function of class ${\mathcal C}^1$, and $\Gamma_1,\dots,\Gamma_N\in\mathbb{R}\setminus\{0\}$ are the vorticities. The Kirchhoff-Routh Hamiltonian from fluid dynamics corresponds to $\Psi(p) = -\sum\limits_{i=1}^N \Gamma_i^2h(p_i,p_i)$ where $h\colon \Sigma\times\Sigma\to\mathbb{R}$ is the regular part of the Laplace-Beltrami operator. We obtain critical points $p=(p_1,\dots,p_N)$ for arbitrary $N$ and vorticities $(\Gamma_1,\dots,\Gamma_N)$ in $\mathbb{R}^N\setminus V$ where $V$ is an explicitly given algebraic variety of codimension 1.References
M. Ahmedou and M. Ben Ayed, Theory of “critical points at infinity” and a resonant singular Liouville-type equation, Adv. Nonlinear Stud. 17 (2017), 139–166.
M. Ahmedou and M. Ben Ayed, Morse inequalities at infinity for a resonant mean field equation, Commun. Contemp. Math. 25 (2023), paper no. 2150054, 37 pp.
M. Ahmedou, M. Ben Ayed and M. Lucia, On a resonant mean field type equation: a “critical point at infinity” approach, Discrete Contin. Dyn. Syst. 37 (2017), 1789–1818.
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer–Verlag, Berlin 1998.
D. Bartolucci and A. Pistoia, Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation, IMA J. Appl. Math. 72 (2007, 706–729.
T. Bartsch, Periodic solutions of singular first-order Hamiltonian systems of N -vortex type, Arch. Math. (Basel) 107 (2016), 413–422.
T. Bartsch and Q. Dai, Periodic solutions of the N -vortex Hamiltonian system in planar domains, J. Differential Equations 260 (2016), 2275–2295.
T. Bartsch and B. Gebhard, Global continua of periodic solutions of singular first-order Hamiltonian systems of N -vortex type, Math. Ann. 369 (2017), 627–651.
T. Bartsch and A. Pistoia, Critical points of the N -vortex Hamiltonian in bounded planar domains and steady state solutions of the incompressible Euler equations, SIAM J. Appl. Math. 75 (2015), 726–744.
T. Bartsch, A. Pistoia and T. Weth, N -vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-Poisson and the Lane–Emden–Fowler equations, Comm. Math. Phys. 297 (2010), 653–686.
T. Bartsch and M. Sacchet, Periodic solutions with prescribed minimal period of vortex type problems in domains, Nonlinearity 31 (2018), 2156–2172.
S. Boatto and J. Koiller, Vortices on closed surfaces, Geometry, Mechanics, and Dynamics, Fields Inst. Commun., vol. 73, Springer, New York, 2015, pp. 185–237.
C.-C. Chen and C.-S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), 1667–1727.
T. D’Aprile, Multiple blow-up solutions for the Liouville equation with singular data, Comm. Partial Differential Equations 38 (2013), 1409–1436.
T. D’Aprile, Sign-changing blow-up solutions for Hénon type elliptic equations, J. Funct. Anal. 268 (2015), 2067–2101.
T. D’Aprile and P. Esposito, Equilibria of point-vortices on closed surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17 (2017), 287–321.
M. del Pino, P. Esposito, P. Figueroa and M. Musso, Nontopological condensates for the self-dual Chern-Simons–Higgs model, Comm. Pure Appl. Math. 68 (2015), 1191–1283.
M. del Pino, M. Kowalczyk and M. Musso, Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations 24 (2005), 47–81.
D.G. Dritschel and S. Boatto, The motion of point vortices on closed surfaces, Proc. A. 471 (2015), no. 2176, 20140890, 25 pp.
P. Esposito and P. Figueroa, Singular mean field equations on compact Riemann surfaces, Nonlinear Anal. 111 (2014), 33–65.
P. Figueroa, Singular limits for Liouville equations on the flat two-torus, Calc. Var. Partial Differential Equations 49 (2014), 613–647.
P. Figueroa, Bubbling solutions for mean field equations with variable intensities on compact Riemann surfaces, arXiv:2203.09731, 2022.
B. Gebhard, Periodic solutions for the N -vortex problem via a superposition principle, Discrete Contin. Dyn. Syst. 38 (2018), 5443–5460.
H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858), 25–55.
D. Henry, Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations, Cambridge University Press, Cambridge, 2005.
Y. Kimura, Vortex motion on surfaces with constant curvature, Roy. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), 245–259.
G. Kirchhoff, Vorlesungen über Mathematische Physik, Teubner, Leipzig, 1876.
C. Kuhl, Symmetric equilibria for the N -vortex problem, J. Fixed Point Theory Appl. 17 (2015), 597–624.
C. Kuhl, Equilibria for the N -vortex-problem in a general bounded domain, J. Math. Anal. Appl. 433 (2016), 1531–1560.
A.J. Majda and A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
P.K. Newton, The N -Vortex Problem, Springer–Verlag, New York, 2001.
R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19–30.
P.G. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge, 1992.
T. Sakajo and Y. Shimizu, Point vortex interactions on a toroidal surface, Proc. A. 472 (2016), paper no. 2191, 24 pp.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohameden Ahmedou, Thomas Bartsch, Tim Fiernkranz

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0