Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system
DOI:
https://doi.org/10.12775/TMNA.2022.066Keywords
Randers metric, Kropina metric, geodesics, affine control systems, causal Killing field, Zermelo's navigation problemAbstract
We consider a geodesic problem in a manifold endowed with a Randers-Kropina metric. This is a type of a singular Finsler metric arising both in the description of the lightlike vectors of a spacetime endowed with a causal Killing vector field and in the Zermelo's navigation problem with a wind represented by a vector field having norm not greater than one. By using Lusternik-Schnirelman theory, we prove existence of infinitely many geodesics between two given points when the manifold is not contractible. Due to the type of non-holonomic constraints that the velocity vectors must satisfy, this is achieved thanks to some recent results about the homotopy type of the set of solutions of an affine control system associated with a totally non-integrable distribution.References
D. Bao, S.S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry, Springer–Verlag, New York, 2000.
R. Bartolo, A.M. Candela and J.L. Flores, Connectivity by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field, Rev. Mat. Iberoam. 33 (2017), 1–28.
R. Bartolo, E. Caponio, A. Germinario and M. Sánchez, Convex domains of Finsler and Riemannian manifolds, Calc. Var. Partial Differential Equations 40 (2011), 335–356.
J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian Geometry, Marcel Dekker Inc., New York, second ed., 1996.
F. Boarotto and A. Lerario, Homotopy properties of horizontal path spaces and a theorem of Serre in subriemannian geometry, Comm. Anal. Geom. 25 (2017), 269–301.
I. Bucataru and R. Miron, Finsler–Lagrange Geometry, Editura Academiei Române, Bucharest, 2007.
A.M. Candela, J. Flores and M. Sánchez, Global hyperbolicity and Palais–Smale condition for action functionals in stationary spacetimes, Adv. Math. 218 (2008), 515–556.
E. Caponio, F. Giannoni, A. Masiello and S. Suhr, Connecting and closed geodesics of a Kropina metric, Adv. Nonlinear Stud. 21 (2021), 683–695.
E. Caponio, M.A. Javaloyes and A. Masiello, On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann. 351 (2011), 365–392.
E. Caponio, M.A. Javaloyes and M. Sánchez, On the interplay between Lorentzian causality and Finsler metrics of Randers type, Rev. Mat. Iberoam. 27 (2011), 919–952.
E. Caponio, M.A. Javaloyes and M. Sánchez, Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes, Mem. Amer. Math. Soc. (to appear), https://arxiv.org/abs/1407.5494.
C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order, Holden-Day Inc., San Francisco, California, 1967.
M. Crampin, T. Mestdag and D.J.Saunders, The multiplier approach to the projective Finsler metrizability problem, Diff. Geom. Appl. 30 (2012), 604–621.
J. Dominy and H. Rabitz, Dynamic homotopy and landscape dynamical set topology in quantum control, J. Math. Phys. 53 (2012), 082201, 17.
E. Fadell and S. Husseini, Category of loop spaces of open subsets in Euclidean space, Nonlinear Anal. 17 (1991), 1153–1161.
J.L. Flores and M. Sánchez, Geodesics in stationary spacetimes. Application to Kerr spacetime, Int. J. Theor. Phys., Group Theory and Nonlinear Optics 8 (2002), 319–336.
M.A. Javaloyes, Anisotropic tensor calculus, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1941001, 26.
M.A. Javaloyes, Curvature computations in Finsler geometry using a distinguished class of anisotropic connections, Mediterr. J. Math. 17 (2020), 123, 21.
M.A. Javaloyes and M. Sánchez, On the definition and examples of Finsler metrics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XIII (2014), 813–858.
W. Klingenberg, Lectures on Closed Geodesics, Springer–Verlag, Berlin, Heidelberg, 1978.
A. Masiello, Variational Methods in Lorentzian Geometry, Pitman Research Notes in Mathematics, Longman Scientific & Technical, New York, 1994.
A. Masiello, Fermat metrics, Symmetry 13 (2021), 1422.
B. O’Neill, Semi-Riemannian Geometry, Academic Press Inc., New York, 1983.
R.S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.
M. Sánchez, Some remarks on causality theory and variational methods in Lorenzian manifolds, Conferenze del Seminario di Matematica dell’Università di Bari, 1997, pp. ii+12, https://arxiv.org/abs/0712.0600.
E. Zermelo, Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung, Z. Angew. Math. Mech. 11 (1931), 114–124.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Erasmo Caponio, Miguel Angel Javaloyes, Antonio Masiello

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0