Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system
  • Home
  • /
  • Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system

Authors

  • Erasmo Caponio https://orcid.org/0000-0003-1454-8897
  • Miguel Angel Javaloyes https://orcid.org/0000-0002-4662-2548
  • Antonio Masiello https://orcid.org/0000-0003-0746-701X

DOI:

https://doi.org/10.12775/TMNA.2022.066

Keywords

Randers metric, Kropina metric, geodesics, affine control systems, causal Killing field, Zermelo's navigation problem

Abstract

We consider a geodesic problem in a manifold endowed with a Randers-Kropina metric. This is a type of a singular Finsler metric arising both in the description of the lightlike vectors of a spacetime endowed with a causal Killing vector field and in the Zermelo's navigation problem with a wind represented by a vector field having norm not greater than one. By using Lusternik-Schnirelman theory, we prove existence of infinitely many geodesics between two given points when the manifold is not contractible. Due to the type of non-holonomic constraints that the velocity vectors must satisfy, this is achieved thanks to some recent results about the homotopy type of the set of solutions of an affine control system associated with a totally non-integrable distribution.

References

D. Bao, S.S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry, Springer–Verlag, New York, 2000.

R. Bartolo, A.M. Candela and J.L. Flores, Connectivity by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field, Rev. Mat. Iberoam. 33 (2017), 1–28.

R. Bartolo, E. Caponio, A. Germinario and M. Sánchez, Convex domains of Finsler and Riemannian manifolds, Calc. Var. Partial Differential Equations 40 (2011), 335–356.

J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian Geometry, Marcel Dekker Inc., New York, second ed., 1996.

F. Boarotto and A. Lerario, Homotopy properties of horizontal path spaces and a theorem of Serre in subriemannian geometry, Comm. Anal. Geom. 25 (2017), 269–301.

I. Bucataru and R. Miron, Finsler–Lagrange Geometry, Editura Academiei Române, Bucharest, 2007.

A.M. Candela, J. Flores and M. Sánchez, Global hyperbolicity and Palais–Smale condition for action functionals in stationary spacetimes, Adv. Math. 218 (2008), 515–556.

E. Caponio, F. Giannoni, A. Masiello and S. Suhr, Connecting and closed geodesics of a Kropina metric, Adv. Nonlinear Stud. 21 (2021), 683–695.

E. Caponio, M.A. Javaloyes and A. Masiello, On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann. 351 (2011), 365–392.

E. Caponio, M.A. Javaloyes and M. Sánchez, On the interplay between Lorentzian causality and Finsler metrics of Randers type, Rev. Mat. Iberoam. 27 (2011), 919–952.

E. Caponio, M.A. Javaloyes and M. Sánchez, Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes, Mem. Amer. Math. Soc. (to appear), https://arxiv.org/abs/1407.5494.

C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order, Holden-Day Inc., San Francisco, California, 1967.

M. Crampin, T. Mestdag and D.J.Saunders, The multiplier approach to the projective Finsler metrizability problem, Diff. Geom. Appl. 30 (2012), 604–621.

J. Dominy and H. Rabitz, Dynamic homotopy and landscape dynamical set topology in quantum control, J. Math. Phys. 53 (2012), 082201, 17.

E. Fadell and S. Husseini, Category of loop spaces of open subsets in Euclidean space, Nonlinear Anal. 17 (1991), 1153–1161.

J.L. Flores and M. Sánchez, Geodesics in stationary spacetimes. Application to Kerr spacetime, Int. J. Theor. Phys., Group Theory and Nonlinear Optics 8 (2002), 319–336.

M.A. Javaloyes, Anisotropic tensor calculus, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1941001, 26.

M.A. Javaloyes, Curvature computations in Finsler geometry using a distinguished class of anisotropic connections, Mediterr. J. Math. 17 (2020), 123, 21.

M.A. Javaloyes and M. Sánchez, On the definition and examples of Finsler metrics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XIII (2014), 813–858.

W. Klingenberg, Lectures on Closed Geodesics, Springer–Verlag, Berlin, Heidelberg, 1978.

A. Masiello, Variational Methods in Lorentzian Geometry, Pitman Research Notes in Mathematics, Longman Scientific & Technical, New York, 1994.

A. Masiello, Fermat metrics, Symmetry 13 (2021), 1422.

B. O’Neill, Semi-Riemannian Geometry, Academic Press Inc., New York, 1983.

R.S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.

M. Sánchez, Some remarks on causality theory and variational methods in Lorenzian manifolds, Conferenze del Seminario di Matematica dell’Università di Bari, 1997, pp. ii+12, https://arxiv.org/abs/0712.0600.

E. Zermelo, Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung, Z. Angew. Math. Mech. 11 (1931), 114–124.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
CAPONIO, Erasmo, JAVALOYES, Miguel Angel and MASIELLO, Antonio. Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 527 - 547. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.066.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Erasmo Caponio, Miguel Angel Javaloyes, Antonio Masiello

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop