Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Rank-two solenoidal endomorphisms
  • Home
  • /
  • Rank-two solenoidal endomorphisms
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Rank-two solenoidal endomorphisms

Authors

  • Ku Yong Ha
  • Jong Bum Lee https://orcid.org/0000-0001-8544-3051

DOI:

https://doi.org/10.12775/TMNA.2022.063

Keywords

$p$-adic absolute value, Pontryagin dual, Reidemeister number, solenoid, solenoidal endomorphism, subgroup index, torsion-free abelian group

Abstract

Let $G$ be a torsion-free abelian group of rank two and let $\phi$ be an endomorphism of $G$, called a rank-two \emph{solenoidal endomorphism}. Then it is represented by a $2\times 2$-matrix $M_\phi$ with rational entries. The purpose of this article is to prove the following: The group, $\mathrm{coker}(\phi)$, of the cokernut of $\phi$ is finite if and only if $M_\phi$ is nonsingular, and if it is so, then we give an explicit formula for the order of $\mathrm{coker}(\phi)$, $[G:\mathrm{im}(\phi)]$, in terms of $p$-adic absolute values of the determinant of $M_\phi$. Since $G$ is abelian, the Reidemeister number of $\phi$ is equal to the order of the cokernut of $\mathrm{id}-\phi$ and, when it is finite, it is equal to the number of fixed points of the Pontryagin dual $\widehat\phi$ of $\phi$. Thereby, we solve completely the problem raised in \cite{Miles} of finding the possible sequences of periodic point counts for \emph{all} endomorphisms of the rank-two solenoids.

References

D.M. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Mathematics, vol. 931, Springer–Verlag, Berlin, New York, 1982.

R. Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), 68–122.

R.A. Beaumont and R.S. Pierce, Torsion Free Groups of Rank Two, Mem. Amer. Math. Soc., vol. 38, Rhode Island, 1961.

J. Bell, R. Miles and T. Ward, Towards a Póly–Carlson dichotomy for algebraic dynamics, Indag. Math. 25 (2014), 652–668.

A. Fel’shtyn and R. Hill, The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion, K-Theory, 8 (1994), 367–393.

A. Fel’shtyn and B. Klopsch, Pólya–Carlson dichotomy for coincidence Reidemeister zeta functions via profinite completions, Indag. Math. 33 (2022), 753–767.

A. Fel’shtyn and E. Troitsky, Pólya–Carlson dichotomy for dynamical zeta functions and a twisted Burnside–Frobenius theorem, Russ. J. Math. Phys. 28, (2021), 455–463.

A. Fel’shtyn and M. Zietek, Dynamical zeta functions of Reidemeister type and representations spaces, Dynamics: Topology and Numbers, Contemp. Math., vol. 744, Amer. Math. Soc., Providence, RI, 2020, pp. 57–82.

L. Fuchs, Infinite Abelian Groups, vol. II, Pure and Applied Mathematics, Vol. 36-II, Academic Press, New York, London, 1973.

T.Giordano, I.F. Putnam and C.F. Skau, Zd -odometers and cohomology, Groups Geom. Dyn. 13 (2019), 909–938.

K.Y. Ha, J.B. Lee and W.S. Yoo, The Reidemeister numbers and the Hirsch ranks for preimage subgroups, J. Fixed Point Theory Appl. 25 (2023), article no. 19.

F.L. Kluempen and D.M. Reboli, When are two subgroups of the rationals isomorphic?, Math. Mag. 77 (2004), 374–379.

A.W. Knapp, Advanced Algebra, East Setauket, New York, 2016.

M. Król, The Automorphism Groups and Endomorphism Rings of Torsion-Free Abelian Groups of Rank Two, Dissertationes Math. (Rozprawy Mat.), vol. 55, PWN, Warsaw, 1967.

J.B. Lee and K.R. Panzarin, Nielsen coincidence theory on infra-solvmanifolds of Sol, Sci. China Math. 64 (2021), 1861–1884.

R. Miles, Periodic points of endomorphisms on solenoids and related groups, Bull. London Math. Soc. 40 (2008), 696–704.

P. Miller, A classification of the subgroups of the rationals under addition, https://math.whitman.edu/SeniorProjects/2011/SeniorProject PatrickMiller.pdf.

J. Neukirch, Algebraic Number Theory, Springer–Verlag, Berlin, 1999.

W. Rudin, Fourier Analysis on Groups, John Wiley & Sons, Inc., New York, 1990.

M. Sabitova, Generalized ideal classes in applications to toroidal solenoids, Pacific J. Math. 318 (2022), 189–228.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
HA, Ku Yong and LEE, Jong Bum. Rank-two solenoidal endomorphisms. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 291 - 329. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.063.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Ku Yong Ha, Jong Bum Lee

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop