Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Lusternik-Schnirelmann theory to topological complexity from $A_{\infty}$-view point
  • Home
  • /
  • Lusternik-Schnirelmann theory to topological complexity from $A_{\infty}$-view point
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Lusternik-Schnirelmann theory to topological complexity from $A_{\infty}$-view point

Authors

  • Norio Iwase

DOI:

https://doi.org/10.12775/TMNA.2022.060

Keywords

Lusternik-Schnirelmann category, topological complexity, fibrewise theory, $A_{\infty}$-structure, classifying space

Abstract

We are trying to look over the Lusternik-Schnirelmann theory (L-S theory, for short) and the Topological Complexity (TC, for short) as a natural extension of the L-S theory. In particular, we focus on the impact of the ideas originated from E. Fadell and S. Husseini on both theories. More precisely, we see how their ideas on a category weight and a relative category drive the L-S theory and the TC.

References

J. Aguilar-Guzmán and J. González, Motion planning in polyhedral products of groups and a Fadell–Husseini approach to topological complexity (2021), arXiv: https://arxiv.org/abs/2109.11106.

I. Beršteı̆n, Sur la catégorie de Lusternik–Schnirelmann, C.R. Acad. Sci. Paris 246 (1958), 362–364.

I. Berstein, On the Lusternik–Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 129–134.

I. Berstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1961/1962), 265–279.

I. Berstein and P.J. Hilton, Category and generalized Hopf invariants, Illinois J. Math. 4 (1960), 437–451.

D.C. Cohen and L. Vandembroucq, Topological complexity of the Klein bottle, J. Appl. Comput. Topol. 1 (2017), no. 2, 199–213.

O. Cornea, Cone-length and Lusternik–Schnirelmann category, Topology 33 (1994), no. 1, 95–111.

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003.

A. Costa and M. Farber, Motion planning in spaces with small fundamental groups, Commun. Contemp. Math. 12 (2010), no. 1, 107–119.

M. Crabb and I. James, Fibrewise Homotopy Theory, Springer Monographs in Mathematics, Springer–Verlag London, Ltd., London, 1998.

A.N. Dranishnikov and Y.B. Rudyak, On the Berstein–Svarc theorem in dimension 2, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 2, 407–413.

S. Eilenberg and T. Ganea, On the Lusternik–Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517–518.

E. Fadell and S. Husseini, Category Weight and Steenrod Operations, vol. 37, 1992, pp. 151–161. Papers in honor of José Adem (Spanish).

E. Fadell and S.Y. Husseini, Relative category, products and coproducts, Rend. Sem. Mat. Fis. Milano 64 (1996), 99–115.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221.

M. Farber and M. Grant, Robot motion planning, weights of cohomology classes, and cohomology operations, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3339–3349.

L. Fernández-Suárez, A. Gómez-Tato, J. Strom and D. Tanré, The Lusternik–Schnirelmann category of Sp(3), Proc. Amer. Math. Soc. 132 (2004), no. 2, 587–595.

R.H. Fox, On the Lusternik Schnirelmann category, Thesis (Ph.D.), Princeton University, 1939.

R.H. Fox, On the Lusternik–Schnirelmann category, Ann. of Math. (2) 42 (1941), 333–370.

K. Fukaya and K. Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999), no. 5, 933–1048.

T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417–427.

H. Hopf, Über die topologie der gruppen-mannigfaltigkeiten und ihre verallgemeinerungen, Ann. of Math. (2) 42 (1941), 22–52.

N. Iwase, Ganea’s conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998), no. 6, 623–634.

N. Iwase, Co-H-spaces and the Ganea conjecture, Topology 40 (2001), no. 2, 223–234.

N. Iwase, A∞ -method in Lusternik–Schnirelmann category, Topology 41 (2002), no. 4, 695–723.

N. Iwase, The Ganea conjecture and recent developments on Lusternik–Schnirelmann category, Sugaku Expositions, vol. 20, 2007, pp. 43–63 [transl. of Sūgaku 56 (2004), no. 3, 281–296; mr2086116].

N. Iwase, Categorical length, relative L-S category and higher Hopf invariants, Algebraic Topology — Old and New, vol. 85, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2009, pp. 205–224.

N. Iwase, Associahedra, multiplihedra and units in A∞ form, 11, 2012, arXiv: https://arxiv.org/pdf/1211.5741.pdf.

N. Iwase, K. Kikuchi and T. Miyauchi, On Lusternik–Schnirelmann category of SO(10), Fund. Math. 234 (2016), no. 3, 201–227.

N. Iwase and A. Kono, Lusternik–Schnirelmann category of Spin(9), Trans. Amer. Math. Soc. 359 (2007), no. 4, 1517–1526.

N. Iwase and M. Mimura, Higher homotopy associativity, Algebraic Topology (Arcata, CA, 1986), Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 193–220.

N. Iwase and M. Mimura, L-S categories of simply-connected compact simple Lie groups of low rank, Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, 2001), Progr. Math, vol. 215, Birkhäuser, Basel, 2004, pp. 199–212.

N. Iwase and M. Sakai Topological complexity is a fibrewise L-S category, Topology Appl. 157 (2010), no. 1, 10–21.

N. Iwase and M. Sakai, Erratum to “Topological complexity is a fibrewise L-S category” [Topology Appl. 157 (2010), no. 1, 10–21, mr2556074], Topology Appl. 159 (2012), no1̇0–11, 2810–2813.

N. Iwase, M. Sakai and M. Tsutaya, A short proof for tc(K) = 4, Topology Appl. 264 (2019), 167–174.

I.M. James, On category, in the sense of Lusternik–Schnirelmann, Topology 17 (1978), no. 4, 331–348.

I.M. James and J.R. Morris, Fibrewise category, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 1–2, 177–190.

L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationnels, Actualités Scientifiques Industrielles: Exposés sur l’Analyse Math. Et ses Applications, Hermann, 1934, Number 1.

M. Mather, Pull-backs in homotopy theory, Canadian J. Math. 28 (1976), no. 2, 225–263.

R.J. Milgram, The bar construction and abelian H-spaces, Illinois J. Math. 11 (1967), 242–250.

J. Milnor, Construction of universal bundles I, Ann. of Math. (2) 63 (1956), 272–284.

J. Milnor, Construction of universal bundles II, Ann. of Math. (2) 63 (1956), 430–436.

J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280.

Y.B. Rudyak, Category weight: new ideas concerning Lusternik–Schnirelmann category, Homotopy and Geometry (Warsaw, 1997), Banach Center Publ., vol. 45, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 47–61.

Y.B. Rudyak, On analytical applications of stable homotopy (the Arnold conjecture, critical points), Math. Z. 230 (1999), no. 4, 659–672.

Y.B. Rudyak and J. Oprea, On the Lusternik–Schnirelmann category of symplectic manifolds and the Arnold conjecture, Math. Z. 230 (1999) , no. 4, 673–678.

M. Sakai, A∞ -spaces and L-S category in the category of fibrewise spaces, Topology Appl. 157 (2010), no. 13, 2131–2135.

W. Singhof, On the Lusternik–Schnirelmann category of Lie groups, Math. Z. 145 (1975), no. 2, 111–116.

W. Singhof, On the Lusternik–Schnirelmann category of Lie groups II, Math. Z. 151 (1976), no. 2, 143–148.

J.D. Stasheff, Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108 (1963), 275–292; 293–312.

J. Stasheff, H-Spaces from a Homotopy Point of View, Lecture Notes in Mathematics, vol. 161, Springer–Verlag, Berlin, New York, 1970.

J.A. Strom, Category weight and essential category weight, Ph.D. Thesis ProQuest LLC, Ann Arbor, MI, The University of Wisconsin, Madison, 1997.

M. Sugawara, A condition that a space is group-like, Math. J. Okayama Univ. 7 (1957), 123–149.

M. Sugawara, On a condition that a space is an H-space, Math. J. Okayama Univ. 6 (1957), 109–129.

A.S. Švarc, The genus of a fibered space, Trudy Moskov. Mat. Obšč 10 (1961), 217–272.

A.S. Švarc, The genus of a fibre space, Trudy Moskov Mat. Obšč 11 (1962), 99–126.

A.S. Švarc, The genus of a fiber space Amer. Math. Soc. Trans. Ser. 2 55 (1966), 49–140.

H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Stud., No. 49, Princeton University Press, Princeton, N.J., 1962.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
IWASE, Norio. Lusternik-Schnirelmann theory to topological complexity from $A_{\infty}$-view point. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 217 - 238. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.060.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Norio Iwase

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop