Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Bifurcation of solutions of $U(1)$-equivariant semilinear boundary value problems
  • Home
  • /
  • Bifurcation of solutions of $U(1)$-equivariant semilinear boundary value problems
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Bifurcation of solutions of $U(1)$-equivariant semilinear boundary value problems

Authors

  • Jacobo Pejsachowicz

DOI:

https://doi.org/10.12775/TMNA.2022.056

Keywords

Equivariant bifurcation, semilinear Fredholm maps, index bundle, elliptic BVP

Abstract

Assuming that there is a known (trivial) branch of solutions of a parameterized family of equations, topological bifurcation studies the topological invariants of the linearized equations along the trivial branch whose nonvanishing entails the appearance of bifurcation from the trivial branch. We introduce here some refined topological invariants for semilinear elliptic boundary value problems equivariant with respect to the action of the circle $U(1)$ allowing to improve, in this case, some previously obtained bifurcation criteria for general nonlinear elliptic boundary value problems.

References

M.S. Agranovich, Elliptic Boundary Problems, Partial Differential Equations IX, Encyclopedia of Mathematical Sciences, Springer–Verlag, 1997.

J.C. Alexander, Bifurcation of zeroes of parameterized functions, J. Funct. Anal. 29 (1978), 37–53.

J.C. Alexander and J.Yorke, Calculating bifurcation invariants as elements in the homotopy of the general linear group, J. Pure Appl. Algebra 13 (1978), 1–9.

M.F. Atiyah, Thom complexes, Proc. Lond. Math. Soc. 11 (1961), 291–310.

M.F. Atiyah, I.M. Singer, The index of elliptic operators IV, V, Ann. of Math. 93(1971), pp. 119-149.

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied equivariant degree, AIMS Series on Differential Equations and Dynamical Systems (AIMS), vol. 1, Springfield, MO, 2006.

J.C. Becker and R. Schultz, Equivariant function spaces and stable homotopy theory I, Comment. Math. Helv. 49 (1974), 1–34.

W. Browder, Surgery and the theory of differentiable transformation groups, Proceedings of the Conference of Transformation Groups (New Orláns, 1967), Springer–Verlag, New York, 1968, pp. 1-46.

E.N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc. (3) 26 (1973), 359–384.

B.V. Fedosov, A periodicity theorem in the algebra of symbols, Math. USSR Sb. 34 (1978), 382–410.

P. Fitzpatrick and J. Pejsachowicz, Orientation and the Leray–Schauder theory for fully nonlinear elliptic boundary value problems, Mem. Amer. Math. Soc. 101 (1993), no. 483.

W. Greub, S. Halperin and R.Vanstone, Connections, Curvature, and Cohomology, vol. I, Academic Press, New York, 1973.

D. Husemoller, Fibre Bundles, Springer–Verlag, 1975.

J. Ize, Bifurcation theory for Fredholm operators, Mem. Am. Math. Soc. 174 (1976).

J. Ize, Topological bifurcation, Topological Nonlinear Analysis, Progr. Nonlinear Differential Equations 15 (1995), 341–463.

J. Ize and A. Vignoli, Equivariant Degree Theory, Walter de Gruyter & Co., Berlin, 2003.

G. López Garza and S. Rybicki, Equivariant bifurcation index, Nonlinear Anal. 73 (2010), 2779–2791.

T. Matsuoka, Equivariant function spaces and bifurcation, J. Math. Soc. Japan 35 (1983), 43–52.

J. Pejsachowicz, K-theoretic methods in bifurcation theory, Contemp. Math. 72 (1988), 193–205.

J. Pejsachowicz, The Leray–Schauder reduction and bifurcation for parametrized families of nonlinear elliptic boundary value problems, Topol. Methods Nonlinear Anal. 18 (2001), 243–268.

J. Pejsachowicz, Bifurcation of Fredholm maps I; Index bundle and bifurcation, Topol. Methods Nonlinear Anal. 38 (2011), no. 1, 115–168.

J. Pejsachowicz, Bifurcation of Fredholm maps II; The dimension of the set of bifurcation points, Topol. Methods Nonlinear Anal. 38 (2011), no. 2, 291–305.

J. Pejsachowicz, The family index theorem and bifurcation of solutions of nonlinear elliptic BVP, J. Differential Equations 252 (2011), 4942–4961.

J. Pejsachowicz, The index bundle and bifurcation from the infinity of solutions of nonlinear elliptic boundary value problems, J. Fixed Point Theory Appl. 17 (2015), 43–64.

J. Pejsachowicz and P.J. Rabier, Degree theory for C 1 -Fredholm mappings of index 0, J. Anal. Math. 76 (1998), 289–319.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
PEJSACHOWICZ, Jacobo. Bifurcation of solutions of $U(1)$-equivariant semilinear boundary value problems. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 491 - 500. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.056.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Jacobo Pejsachowicz

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop