Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Monotonicity of eigenvalues of the fractional $p$-Laplacian with singular weights
  • Home
  • /
  • Monotonicity of eigenvalues of the fractional $p$-Laplacian with singular weights
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Monotonicity of eigenvalues of the fractional $p$-Laplacian with singular weights

Authors

  • Antonio Iannizzotto https://orcid.org/0000-0002-8505-3085

DOI:

https://doi.org/10.12775/TMNA.2022.024

Keywords

Fractional $p$-Laplacian, eigenvalue problems, singular weights

Abstract

We study a nonlinear, nonlocal eigenvalue problem driven by the fractional $p$-Laplacian with an indefinite, singular weight chosen in an optimal class. We prove the existence of an unbounded sequence of positive variational eigenvalues and alternative characterizations of the first and second eigenvalues. Then, by means of such characterizations, we prove strict decreasing monotonicity of such eigenvalues with respect to the weight function.

References

A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725–728.

A. Anane and N. Tsouli. On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations (Fés, 1994), Pitman Res. Notes Math. 343 (1996), 1–9.

A. Bonnet, A deformation lemma on a C 1 manifold, Manuscripta Math. 81 (1993), 339–359.

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-equalities, Kodai Math. J. 37 (2014), 769–799.

L. Brasco and E. Parini, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var. 9 (2016), 323–355.

L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces und. 16 (2014), 419–458.

L. Brasco, M. Squassina and Y. Yang, Global compactness results for nonlocal problems, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), 391–424.

M. Cuesta, Minimax theorems on C 1 manifolds via Ekeland variational principle, Abstr. Appl. Anal. 2003 (2003), 757–768.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

P. Drábek and S.B. Robinson, Resonance problems for the p-Laplacian, J. Funct. Anal. 169 (1999), 189–200.

E.R. Fadell and P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139–174.

G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Mat. Univ. Parma 5 (2014), 373–386.

S. Frassu and A. Iannizzotto, Strict monotonicity and unique continuation for non-local eigenvalue problems, Taiwan. J. Math. 24 (2020), 681–694.

S. Frassu and A. Iannizzotto, Extremal constant sign solutions and nodal solutions for the fractional p-Laplacian, J. Math. Anal. Appl. 501 (2021), art. 124205.

S. Frassu and A. Iannizzotto, Multiple solutions for the fractional p-Laplacian with jumping reactions, J. Fixed Point Theory Appl. 25 (2023), art. 25.

L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall, Boca Raton, 2005.

K. Ho, K. Perera, I. Sim and M. Squassina, A note on fractional p-Laplacian problems with singular weights, J. Fixed Point Theory Appl. 19 (2017), 157–173.

K. Ho and I. Sim, Properties of eigenvalues and some regularities on fractional p-Laplacian with singular weights, Nonlinear Anal. 189 (2019), 1–22.

A. Iannizzotto, S. Liu, K. Perera and M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2016), 101–125.

A. Iannizzotto and R. Livrea, Four solutions for fractional p-Laplacian equations with asymmetric reactions, Mediterr. J. Math. 18 (2021), art. 220.

A. Iannizzotto and N.S. Papageorgiou, Existence and multiplicity results for resonant fractional boundary value problems, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), 511–532.

A. Iannizzotto and M. Squassina, Weyl-type laws for fractional p-eigenvalue problems, Asymptot. Anal. 88 (2014), 233–245.

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), 795–826.

M. Lucia and S. Prashanth, Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight, Arch. Math. 86 (2006), 79–89.

K. Perera, R.P. Agarwal and D. O’Regan, Morse Theoretic Aspects of p-Laplacian Type Operators, American Mathematical Society, Providence, 2010.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
IANNIZZOTTO, Antonio. Monotonicity of eigenvalues of the fractional $p$-Laplacian with singular weights. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 423 - 443. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.024.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Antonio Iannizzotto

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop