Monotonicity of eigenvalues of the fractional $p$-Laplacian with singular weights
DOI:
https://doi.org/10.12775/TMNA.2022.024Keywords
Fractional $p$-Laplacian, eigenvalue problems, singular weightsAbstract
We study a nonlinear, nonlocal eigenvalue problem driven by the fractional $p$-Laplacian with an indefinite, singular weight chosen in an optimal class. We prove the existence of an unbounded sequence of positive variational eigenvalues and alternative characterizations of the first and second eigenvalues. Then, by means of such characterizations, we prove strict decreasing monotonicity of such eigenvalues with respect to the weight function.References
A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725–728.
A. Anane and N. Tsouli. On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations (Fés, 1994), Pitman Res. Notes Math. 343 (1996), 1–9.
A. Bonnet, A deformation lemma on a C 1 manifold, Manuscripta Math. 81 (1993), 339–359.
L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-equalities, Kodai Math. J. 37 (2014), 769–799.
L. Brasco and E. Parini, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var. 9 (2016), 323–355.
L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces und. 16 (2014), 419–458.
L. Brasco, M. Squassina and Y. Yang, Global compactness results for nonlocal problems, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), 391–424.
M. Cuesta, Minimax theorems on C 1 manifolds via Ekeland variational principle, Abstr. Appl. Anal. 2003 (2003), 757–768.
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.
P. Drábek and S.B. Robinson, Resonance problems for the p-Laplacian, J. Funct. Anal. 169 (1999), 189–200.
E.R. Fadell and P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139–174.
G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Mat. Univ. Parma 5 (2014), 373–386.
S. Frassu and A. Iannizzotto, Strict monotonicity and unique continuation for non-local eigenvalue problems, Taiwan. J. Math. 24 (2020), 681–694.
S. Frassu and A. Iannizzotto, Extremal constant sign solutions and nodal solutions for the fractional p-Laplacian, J. Math. Anal. Appl. 501 (2021), art. 124205.
S. Frassu and A. Iannizzotto, Multiple solutions for the fractional p-Laplacian with jumping reactions, J. Fixed Point Theory Appl. 25 (2023), art. 25.
L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall, Boca Raton, 2005.
K. Ho, K. Perera, I. Sim and M. Squassina, A note on fractional p-Laplacian problems with singular weights, J. Fixed Point Theory Appl. 19 (2017), 157–173.
K. Ho and I. Sim, Properties of eigenvalues and some regularities on fractional p-Laplacian with singular weights, Nonlinear Anal. 189 (2019), 1–22.
A. Iannizzotto, S. Liu, K. Perera and M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2016), 101–125.
A. Iannizzotto and R. Livrea, Four solutions for fractional p-Laplacian equations with asymmetric reactions, Mediterr. J. Math. 18 (2021), art. 220.
A. Iannizzotto and N.S. Papageorgiou, Existence and multiplicity results for resonant fractional boundary value problems, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), 511–532.
A. Iannizzotto and M. Squassina, Weyl-type laws for fractional p-eigenvalue problems, Asymptot. Anal. 88 (2014), 233–245.
E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), 795–826.
M. Lucia and S. Prashanth, Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight, Arch. Math. 86 (2006), 79–89.
K. Perera, R.P. Agarwal and D. O’Regan, Morse Theoretic Aspects of p-Laplacian Type Operators, American Mathematical Society, Providence, 2010.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Antonio Iannizzotto

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0