Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Motion planning in polyhedral products of groups and a Fadell-Husseini approach to topological complexity
  • Home
  • /
  • Motion planning in polyhedral products of groups and a Fadell-Husseini approach to topological complexity
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Motion planning in polyhedral products of groups and a Fadell-Husseini approach to topological complexity

Authors

  • Jorge Aguilar-Guzmán Aguilar-Guzmán
  • Jesús González https://orcid.org/0000-0003-3541-3369

DOI:

https://doi.org/10.12775/TMNA.2022.018

Keywords

Monoidal topological complexity, Iwase-Sakai conjecture, Fadell-Husseini topological complexity, polyhedral product, relative category

Abstract

We compute the topological complexity of a polyhedral product $\mathcal{Z}$ defined {in terms of} an $\operatorname{LS}$-logarithmic family of locally compact connected $\operatorname{CW}$ topological groups. The answer is given by a combinatorial formula that involves the $\operatorname{LS}$ category of the polyhedral-product factors. As a by-product, we show that the Iwase-Sakai conjecture holds true for $\mathcal{Z}$. The proof methodology {uses} a Fadell-Husseini viewpoint for the monoidal topological complexity $\big(\mathsf{TC}^M\big)$ of a space, which, under mild conditions, recovers Iwase-Sakai's original definition. In the Fadell-Husseini context, the stasis condition - $\mathsf{TC}^M$'s \emph{raison d'\^etre} - can be encoded at the covering level. Our Fadell-Husseini inspired definition provides an alternative to the $\mathsf{TC}^M$ variant given by Dranishnikov, as well as to the ones provided by Garc\'ia-Calcines, Carrasquel-Vera and Vandembroucq in terms of relative category.

References

J. Aguilar-Guzmán, J. González and J. Oprea, Right-angled Artin groups, polyhedral products and the TC-generating function, Proc. Roy. Soc. Edinburgh (accepted).

J.G. Carrasquel-Vera, J.M. Garcı́a-Calcines, and L. Vandembroucq, Relative category and monoidal topological complexity, Topology Appl. 171 (2014), 41–53.

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, 2003.

J.M. Doeraene and M. El Haouari, Up-to-one approximations of sectional category and topological complexity, Topology Appl. 265 (2019), no. 5, 766–783.

A. Dranishnikov, Topological complexity of wedges and covering maps, Proc. Amer. Math. Soc. 142 (2014), no. 12, 4365–4376.

E. Dyer and S. Eilenberg, An adjunction theorem for locally equiconnected spaces, Pacific J. Math. 41 (1972), 669–685.

E. Fadell and S. Husseini, Relative category, products and coproducts, Seminario Matematico e Fisico di Milano 64 (1994), 99–115.

M. Farber, Instabilities of robot motion, Topology Appl. 140 (2004), no. 2–3, 245–266.

J.M. Garcı́a-Calcines, A note on covers defining relative and sectional categories, Topology Appl. 265 (2019), 106810.

J.M. Garcı́a-Calcines and L. Vandembroucq, Weak sectional category, J. London Math. Soc. 82 (2010), no. 3, 621–642.

J. González, B. Gutiérrez and S. Yuzvinsky, Higher topological complexity of subcomplexes of products of spheres and related polyhedral product spaces, Topol. Methods Nonlinear Anal. 48 (2016), no. 2, 419–451.

N. Iwase and M. Sakai, Topological complexity is a fibrewise L-S category, Topology Appl. 157 (2010), no. 1, 10–21.

N. Iwase and M. Sakai, Erratum to “Topological complexity is a fibrewise L-S category” [Topology Appl. 157 (2010), no. 1, 10–21], Topology Appl.159 (2012), no. 10–11, 2810–2813.

A.T. Lundell and S. Weingram, The Topology of CW Complexes, Van Nostrand Reinhold Company, New York, 1969.

G. Lupton and J. Scherer, Topological complexity of H-spaces, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1827–1838.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
AGUILAR-GUZMÁN, Jorge Aguilar-Guzmán and GONZÁLEZ, Jesús. Motion planning in polyhedral products of groups and a Fadell-Husseini approach to topological complexity. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 37 - 57. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.018.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Jorge Aguilar-Guzmán Aguilar-Guzmán, Jesús González

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop