Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Lift factors for the Nielsen root theory on $n$-valued maps
  • Home
  • /
  • Lift factors for the Nielsen root theory on $n$-valued maps
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Lift factors for the Nielsen root theory on $n$-valued maps

Authors

  • Robert F. Brown
  • Daciberg Lima Gonçalves https://orcid.org/0000-0003-4032-7078

DOI:

https://doi.org/10.12775/TMNA.2022.017

Keywords

55M20

Abstract

A root of an $n$-valued map $\varphi \colon X \to D_n(Y)$ at $a \in Y$ is a point $x \in X$ such that $a \in \varphi(x)$. We lift the map $\varphi$ to a split $n$-valued map of finite covering spaces and its single-valued factors are defined to be the lift factors of $\varphi$. We describe the relationship between the root classes at $a$ of the lift factors and those of $\varphi$. We define the Reidemeister root number $\RR (\varphi)$ in terms of the Reidemeister root numbers of the lift factors. We prove that the Reidemeister root number is a homotopy invariant upper bound for the Nielsen root number $NR(\varphi)$, the number of essential root classes, and we characterize essentiality by means of an equivalence relation called the $\Phi$-relation. A theorem of Brooks states that a single-valued map to a closed connected manifold is root-uniform, that is, its root classes are either all essential or all inessential. It follows that if $Y$ is a closed connected manifold, then the lift factors are root-uniform and we relate this property to the root-uniformity of $\varphi$. If $X$ and $Y$ are closed connected oriented manifolds of the same dimension then, by means of the lift factors, we define an integer-valued index of a root class of $\varphi$ that is invariant under $\Phi$-relation and this implies that if its index is non-zero, then the root class is essential.

References

R. Brooks, Certain subgroups of the fundamental group and the number of roots of f (x) = a, Amer. J. Math. 95 (1973), 720–728.

R. Brooks, Nielsen Root Theory, Handbook of Topological Fixed Point Theory, Springer, 2005, pp. 375–431.

R. Brown, Fixed points of n-valued multimaps of the circle, Bull. Polish Acad. Sci. 54 (2006), 153–162.

R. Brown, Nielsen numbers of n-valued fiber maps, J. Fixed Point Theory Appl. 4 (2008), 183–201.

R. Brown, On the Nielsen root theoryof n-valued maps, J. Fixed Point Theory Appl. 23 (2021), no. 4, paper no. 51, 10 pp.

R. Brown, C. Deconinck, K. Dekimpe and P.C. Staecker, Lifting classes for the fixed point theory of n-valued maps, Topology Appl. 274 (2020), 26 pp.

R. Brown and D. Gonçalves, On the topology of n-valued maps, Adv. Fixed Point Theory 8 (2018), 205–220.

R. Brown and K. Kolahi, Nielsen coincidence, fixed point and root theories of n-valued maps, J. Fixed Point Theory Appl. 14 (2013), 309–324.

V. Hansen, Braids and coverings: selected topics, London Math. Soc. Student Texts 18, (1989).

A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

H. Hopf, Zur Topologie der Abbildungen von Manigfaltikeiten II, Math. Ann. 102 (1930), 562–623.

W. Massey, Algebraic Topology: An Introduction, Harcourt, Brace, 1967.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
BROWN, Robert F. and GONÇALVES, Daciberg Lima. Lift factors for the Nielsen root theory on $n$-valued maps. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 269 - 289. [Accessed 27 December 2025]. DOI 10.12775/TMNA.2022.017.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Robert F. Brown, Daciberg Lima Gonçalves

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop