Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Global multiplicity for parametric anisotropic Neumann (p,q)-equations
  • Home
  • /
  • Global multiplicity for parametric anisotropic Neumann (p,q)-equations
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Global multiplicity for parametric anisotropic Neumann (p,q)-equations

Authors

  • Nikolaos S. Papageorgiou https://orcid.org/0000-0003-4800-1187
  • Vicenţiu D. Rădulescu https://orcid.org/0000-0003-4615-5537
  • Dušan D. Repovš https://orcid.org/0000-0002-6643-1271

DOI:

https://doi.org/10.12775/TMNA.2022.010

Keywords

Anisotropic operator, superlinear reaction, positive and nodal solutions, critical groups

Abstract

We consider a Neumann boundary value problem driven by the anisotropic $(p,q)$-Laplacian plus a parametric potential term. The reaction is ``superlinear". We prove a global (with respect to the parameter) multiplicity result for positive solutions. Also, we show the existence of a minimal positive solution and finally, we produce a nodal solution.

References

S.G. Deng and Q. Wang, Nonexistence, existence and multiplicity of positive solutions to the p(x)-Laplacian nonlinear Neumann boundary value problems, Nonlinear Anal. 73 (2010), 2170–2183.

L. Diening, P. Harjulehto, P. Hästo and M. Ruzička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math, vol. 2017, Springer, Heidelberg, 2011.

X. Fan, Global C 1+α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), 397–417.

X. Fan and S.G. Deng, Multiplicity of positive solutions for a class of inhomogeneous Neumann problems involving the p(x)-Laplacian, Nonlinear Differ. Equ. Appl. 14 (2009), 255–271.

X. Fan and X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , Nonlinear Anal. 59 (2004), no. 1–2, 173–188.

M. Galewski, On a Dirichlet problem with p(x)-Laplacian, J. Math. Anal. Appl. 337 (2008), no. 1, 281–291.

L. Gasinski and N.S. Papageorgiou, Anisotropic nonlinear Neumann problems, Calc. Var. 42 (2011), 323–354.

S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dodrecht, The Netherlands, 1997.

K. Kefi, On the Robin problem with indefinite weight in Sobolev spaces with variable exponents, Z. Anal. Anwend. 37 (2018), no. 1, 25–38.

G. Mingione and V.D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl. 501 (2021), no. 1, paper no. 125197, 41 pp.

N.S. Papageorgiou, D. Qin and V.D. Rădulescu, Anisotropic double-phase problems with indefinite potential, Anal. Math. Phys. (2020), 10:63.

N.S. Papageorgiou and V.D. Rădulescu, Coercive and noncoercive nonlinear Neumann problems with indefinite potential, Forum Math. 28 (2016), 545–571.

N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst. 37 (2017), 2589–2618.

N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Nonlinear Analysis–Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019.

N.S. Papageorgiou, V.D. Rădulescu and Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 4465–4502.

N.S. Papageorgiou and Y. Zhang, Constant sign and nodal solutions for superlinear (p, q)-equations with indefinite potential and a concave boundary term, Adv. Nonlinear Anal. 10 (2020), 76–101.

V.D. Rădulescu and D.D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.

P. Takač and J. Giacomoni, A p(x)-Laplacian extension of the Diaz–Saa inequality and some applications, Proc. Roy. Soc. Edinburgh 150 (2020), 205–232.

Z. Tan and F. Fang, Orlicz–Sobolev versus Hölder local minimizers and multiplicity results for quasilinear ellipltic equations, J. Math. Anal. Appl. 402 (2013), 348–370.

X.H. Tang and S.T. Chen, Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations 56 (2017), 110.

X.H. Tang and B.T. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations 261 (2016), 2384–2402.

P. Winkert and R. Zacher, A priori bounds of solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), 865–878.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
PAPAGEORGIOU, Nikolaos S., RĂDULESCU, Vicenţiu D. and REPOVŠ, Dušan D. Global multiplicity for parametric anisotropic Neumann (p,q)-equations. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 393 - 422. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2022.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop