Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the critical $p$-Kirchhoff equation
  • Home
  • /
  • On the critical $p$-Kirchhoff equation
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

On the critical $p$-Kirchhoff equation

Authors

  • Erisa Hasani
  • Kanishka Perera https://orcid.org/0000-0001-6168-247X

DOI:

https://doi.org/10.12775/TMNA.2021.061

Keywords

$p$-Kirchhoff equation, critical Sobolev exponent, existence, multiplicity, Morse theory, Fadell-Rabinowitz cohomological index, cohomological local splitting

Abstract

We study a nonlocal elliptic equation of $p$-Kirchhoff type involving the critical Sobolev exponent. First we give sufficient conditions for the $(\text{PS})$ condition to hold. Then we prove some existence and multiplicity results using tools from Morse theory, in particular, the notion of a cohomological local splitting and eigenvalues based on the Fadell-Rabinowitz cohomological index.

References

A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728.

A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations (Fès, 1994), Pitman Res. Notes Math. Ser., vol. 343, Longman, Harlow, 1996, pp. 1–9.

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490.

K. Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993.

M. Degiovanni, S. Lancelotti and K. Perera, Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting, Commun. Contemp. Math. 12 (2010), no. 3, 475–486.

E.R. Fadell and P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139–174.

A. Hamydy, M. Massar and N. Tsouli, Existence of solutions for p-Kirchhoff type problems with critical exponent, Electron. J. Differential Equations (2011), No. 105, 8 pp.

E. Hasani and K. Perera, On the compactness threshold in the critical Kirchhoff equation, Discrete Contin. Dyn. Syst. 41 (2022), no. 1, 1–19.

Q. Li, Z. Yang and Z. Feng, Multiple solutions of a p-Kirchhoff equation with singular and critical nonlinearities, Electron. J. Differential Equations (2017), paper no. 84, 14 pp.

Y. Li, M. Mei and K. Zhang, Existence of multiple nontrivial solutions for a p-Kirchhoff type elliptic problem involving sign-changing weight functions, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 3, 883–908.

P. Lindqvist, On the equation div (|∇u|p−2 ∇u) + λ|u|p−2 u = 0. Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164.

P. Lindqvist, Addendum: “On the equation div(|∇u|p−2 ∇u) + λ|u|p−2 u = 0” [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164; MR 90h:35088], Proc. Amer. Math. Soc. 116 (1992), no. 2, 583–584.

J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer–Verlag, New York, 1989.

A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity C.R. Math. Acad. Sci. Paris 35 (2014), no. 4, 295–298.

K. Perera, Critical groups of critical points produced by local linking with applications, Abstr. Appl. Anal. 3 (1998), no. 3–4, 437–446.

K. Perera, Homological local linking, Abstr. Appl. Anal. 3 (1998), no. 1–2, 181–189.

K. Perera, Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal. 21 (2003), no. 2, 301–309.

K. Perera, R.P. Agarwal and D. O’Regan, Morse theoretic aspects of p-Laplacian type operators, Mathematical Surveys and Monographs, vol. 161, American Mathematical Society, Providence, RI, 2010.

K. Perera and A. Szulkin, p-Laplacian problems where the nonlinearity crosses an eigenvalue, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 743–753.

E.H. Spanier, Algebraic Topology, Springer–Verlag, New York, 1994, (corrected reprint of the 1966 original).

Ch. Zhou and Y. Song, Multiplicity of solutions for elliptic problems of p-Kirchhoff type with critical exponent, Bound. Value Probl. 223 (2015), 12 pp.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
HASANI, Erisa and PERERA, Kanishka. On the critical $p$-Kirchhoff equation. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 383 - 391. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2021.061.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Erisa Hasani, Kanishka Perera

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop