On the critical $p$-Kirchhoff equation
DOI:
https://doi.org/10.12775/TMNA.2021.061Keywords
$p$-Kirchhoff equation, critical Sobolev exponent, existence, multiplicity, Morse theory, Fadell-Rabinowitz cohomological index, cohomological local splittingAbstract
We study a nonlocal elliptic equation of $p$-Kirchhoff type involving the critical Sobolev exponent. First we give sufficient conditions for the $(\text{PS})$ condition to hold. Then we prove some existence and multiplicity results using tools from Morse theory, in particular, the notion of a cohomological local splitting and eigenvalues based on the Fadell-Rabinowitz cohomological index.References
A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728.
A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations (Fès, 1994), Pitman Res. Notes Math. Ser., vol. 343, Longman, Harlow, 1996, pp. 1–9.
H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490.
K. Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993.
M. Degiovanni, S. Lancelotti and K. Perera, Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting, Commun. Contemp. Math. 12 (2010), no. 3, 475–486.
E.R. Fadell and P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139–174.
A. Hamydy, M. Massar and N. Tsouli, Existence of solutions for p-Kirchhoff type problems with critical exponent, Electron. J. Differential Equations (2011), No. 105, 8 pp.
E. Hasani and K. Perera, On the compactness threshold in the critical Kirchhoff equation, Discrete Contin. Dyn. Syst. 41 (2022), no. 1, 1–19.
Q. Li, Z. Yang and Z. Feng, Multiple solutions of a p-Kirchhoff equation with singular and critical nonlinearities, Electron. J. Differential Equations (2017), paper no. 84, 14 pp.
Y. Li, M. Mei and K. Zhang, Existence of multiple nontrivial solutions for a p-Kirchhoff type elliptic problem involving sign-changing weight functions, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 3, 883–908.
P. Lindqvist, On the equation div (|∇u|p−2 ∇u) + λ|u|p−2 u = 0. Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164.
P. Lindqvist, Addendum: “On the equation div(|∇u|p−2 ∇u) + λ|u|p−2 u = 0” [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164; MR 90h:35088], Proc. Amer. Math. Soc. 116 (1992), no. 2, 583–584.
J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer–Verlag, New York, 1989.
A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity C.R. Math. Acad. Sci. Paris 35 (2014), no. 4, 295–298.
K. Perera, Critical groups of critical points produced by local linking with applications, Abstr. Appl. Anal. 3 (1998), no. 3–4, 437–446.
K. Perera, Homological local linking, Abstr. Appl. Anal. 3 (1998), no. 1–2, 181–189.
K. Perera, Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal. 21 (2003), no. 2, 301–309.
K. Perera, R.P. Agarwal and D. O’Regan, Morse theoretic aspects of p-Laplacian type operators, Mathematical Surveys and Monographs, vol. 161, American Mathematical Society, Providence, RI, 2010.
K. Perera and A. Szulkin, p-Laplacian problems where the nonlinearity crosses an eigenvalue, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 743–753.
E.H. Spanier, Algebraic Topology, Springer–Verlag, New York, 1994, (corrected reprint of the 1966 original).
Ch. Zhou and Y. Song, Multiplicity of solutions for elliptic problems of p-Kirchhoff type with critical exponent, Bound. Value Probl. 223 (2015), 12 pp.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Erisa Hasani, Kanishka Perera

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0