Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Affine-periodic solutions for generalized ODEs and other equations
  • Home
  • /
  • Affine-periodic solutions for generalized ODEs and other equations
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Affine-periodic solutions for generalized ODEs and other equations

Authors

  • Márcia Federson https://orcid.org/0000-0001-5120-3877
  • Rogelio Grau https://orcid.org/0000-0002-4630-4101
  • Carolina Mesquita https://orcid.org/0000-0002-9595-1946

DOI:

https://doi.org/10.12775/TMNA.2022.027

Keywords

Affine-periodic solutions, Henstock-Kurzweil-Stieltjes integral, Krasnosel'skiĭ fixed point theorem, Banach fixed point theorem

Abstract

It is known that the concept of affine-periodicity encompasses classic notions of symmetries as the classic periodicity, anti-periodicity and rotating symmetries (in particular, quasi-periodicity). The aim of this paper is to establish the basis of affine-periodic solutions of generalized ODEs. Thus, for a given real number $T> 0$ and an invertible $n\times n$ matrix $Q$, with entries in $\mathbb C$, we establish conditions for the existence of a $(Q,T)$-affine-periodic solution within the framework of nonautonomous generalized ODEs, whose integral form displays the nonabsolute Kurzweil integral, which encompasses many types of integrals, such as the Riemann, the Lebesgue integral, among others. The main tools employed here are the fixed point theorems of Banach and of Krasnosel'skiĭ. We apply our main results to measure differential equations with Henstock-Kurzweil-Stiejtes righthand sides as well as to impulsive differential equations and dynamic equations on time scales which are particular cases of the former.

References

E. Alvarez, A. Gómez and M. Pinto, (ω, c)-periodic functions and mild solutions to abstract fractional integro-differential equations, Electronic J. Qualitative Theory of Diff. Eq. 16 (2018), 1–8.

H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis, Gruyter Studies in Mathematics, vol. 13, Walter de Gruyter Co., Berlin, 1990.

sc T.M. Apostol, Mathematical Analysis, Addison Wesley Publishing Company, second edition, 1974.

T.S. Blyth and E.F. Robertson, Basic Linear Algebra, Springer, second edition, 2002.

A. Bounemoura, B. Fayad and L. Niederman, Superexponential stability of quasiperiodic motion in Hamiltonian systems, Commun. Math. Phys. 350 (2017), 361–386.

K. Deimling, Nonlinear Functional Analysis, Springer–Verlag, Berlin, 1985.

M. Federson, J.G. Mesquita and A. Slavı́k, Measure functional differential equations and functional dynamic equations on time scales, J. Differential Equations 252 (2012), no. 6, 3816–3847.

M. Federson, J.G. Mesquita and A. Slavı́k, Basic results for functional differential and dynamic equations involving impulses, Math. Nachr. 286 (2013), no. 2–3, 181–204.

M. Federson, R. Grau and J.G. Mesquita, Prolongation of solutions of measure differential equations and dynamical equations on time scales, Math. Nachr. 292 (2019), no. 1, 22–55.

D. Franková, Regulated functions, Math. Bohem. 116 (1991), 20–59.

I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications, Oxford Science Publications, Oxford, New York, 1995.

R.E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lectures Notes in Math, vol. 568, Springer–Verlag, 1977.

B.C. Hall, Lie Groups, Lie Algebras, and Representations: an Elementary Introduction, Springer–Verlag, New York, 2003.

R. Henstock, The equivalence of generalized forms of the Ward, variational, Denjoy–Stieltjes, and Perron–Stieltjes integrals, Proc. London Math. Soc. 10 (1960), no. 3, 281–303.

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer–Verlag, Berlin, 1991.

C.S. Hönig, Volterra–Stieltjes Integral Equations. Functional Analytic Methods; Linear Constraints , Mathematics Studies, No. 16, Notas de Matemática, No. 56, [Notes on Mathematics, No. 56], North-Holland Publishing Co., Amsterdam-Oxford, American Elsevier Publishing Co., New York, 1975.

H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd edition, World Scientific Publishing, New Jersey, London, Singapore, 2004.

A.N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk 98 (1954), 527–530. (Russian)

M.A. Krasnosel’skiı̆, Some problems of Nonlinear Analysis, Amer. Math. Soc. Transl. Ser. 2 10 (1958), no. 2, 345–409.

J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 7 (1957), no. 82, 418–449. (Russian)

J. Kurzweil, Generalized ordinary differential equations, Czechoslovak Math. J. 8 (1958), no. 83, 360–388.

E.L. Lima, Álgebra Linear, IMPA, Rio de Janeiro, 2008. (Portuguese)

J.G. Mesquita, Measure functional differential equations and impulse functional dynamic equations on time scales, Ph.D. thesis, University of São Paulo, São Carlos, 2012.

J.G. Mesquita and A. Slavı́k, Periodic averaging theorems for various types of equations, J. Math. Anal. Appl. 387 (2012), no. 2, 862–877.

G. Monteiro, A. Slavı́k and M. Tvrdý, Kurzweil–Stieltjes Integral Theory and Applications, Series in Real Analysis, vol. 14, World Scientific Publishing Co., River Edge, NJ, 2018.

P. Muldowney, A Modern Theory of Random Variation. With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration, John Wiley & Sons, Inc., Hoboken, NJ, 2012.

H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Tome I, Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques, Dover Publications, Inc., New York, N.Y., 1957. (French)

E.H. Rothe, Introduction to Various Aspects of Degree Theory in Banach Spaces, Mathematical Surveys and Monographs, vol. 23, American Mathematical Society, Providence, RI, 1986.

Š. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Series in Real Anal., vol. 5, 1992.

C. Wang and Y. Li, Affine-periodic solutions for nonlinear dynamic equations on time scales, Affine-periodic solutions for nonlinear dynamic equations on time scales, Adv. Difference Equ. (2015), 2015:286, 16 pp. (English summary)

C. Wang, X. Yang and Y. Li, The existence of affine-periodic solutions for nonlinear differential equations, Rocky Mountain J. Math. 46 (2016), no. 5, 1717–1737.

H. Wang, X. Yang and Y. Li, Rotating-symmetric solutions for nonlinear systems with symmetry, Acta Math. Appl. Sin. Engl. Ser. 31 (2015), no. 2, 307–312. (English summary)

S. Wang, The existence of affine-periodic solutions for nonlinear impulsive differential equations, Bound. Value Probl. (2018), paper no. 113, 13 pp.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-12-10

How to Cite

1.
FEDERSON, Márcia, GRAU, Rogelio and MESQUITA, Carolina. Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis. Online. 10 December 2022. Vol. 60, no. 2, pp. 725 - 760. [Accessed 15 December 2025]. DOI 10.12775/TMNA.2022.027.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Márcia Federson, Rogelio Grau, Carolina Mesquita

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop