Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Time-dependent global attractors for the strongly damped wave equations with lower regular forcing term
  • Home
  • /
  • Time-dependent global attractors for the strongly damped wave equations with lower regular forcing term
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Time-dependent global attractors for the strongly damped wave equations with lower regular forcing term

Authors

  • Xinyu Mei
  • Tao Sun
  • Yongqin Xie
  • Kaixuan Zhu

DOI:

https://doi.org/10.12775/TMNA.2022.022

Keywords

Strongly damped wave equations, critical exponential growth, time-dependent global attractors

Abstract

In this paper, based on a new theoretical framework of time-dependent global attractors (Conti, Pata and Temam \cite{CPT13}), we consider the strongly damped wave equations $\varepsilon(t)u_{tt}-\Delta u_{t}-\Delta u+f(u)=g(x)$ and establish the existence of attractors in $\mathcal{H}_{t}=H_{0}^{1}(\Omega)\times L^{2}(\Omega)$ and $\mathcal{V}_{t}=H_{0}^{1}(\Omega)\times H_{0}^{1}(\Omega)$, respectively.

References

J. Arrieta, A.N. Carvalho and J.K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations 17 (1992), 841–866.

A.N. Carvalho and J.W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc. 66 (2002), 443–463.

A.N. Carvalho and J.W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math. 207 (2002), 287–310.

A.N. Carvalho, J.A. Langa and J.C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013.

J.W. Cholewa and T. Dlotko, Strongly damped wave equation in uniform spaces, Nonlinear Anal. 64 (2006), 174–187.

M. Conti and V. Pata, Asymptotic structure of the attractor for processes on timedependent spaces, Nonlinear Anal. Real World Appl. 19 (2014), 1–10.

M. Conti, V. Pata and M. Squassina, Strongly damped wave equations on R3 with critical nonlinearities, Commun. Appl. Anal. 9 (2005), 161–176.

M. Conti, V. Pata and R. Temam, Attractors for process on time-dependent spaces: Applications to wave equations, J. Differential Equations 255 (2013), 1254–1277.

F. Di Plinio, G.S. Duane and R. Temam, Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst. 29 (2011), 141–167.

Y.L. Du, X. Li and C.Y. Sun, On the asymptotic behavior of strongly damped wave equations, Topol. Methods Nonlinear Anal. 44 (2014), 161–175.

J.M. Ghidaglia and A. Marzocchi, Longtime behavior of strongly damped wave equations, global attractors and their dimension, SIAM J. Math. Anal. 22 (1991), 879–895.

F.J. Meng, M.H. Yang and C.K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 205–225.

V. Pata and M. Squassina, On the strongly damped wave equation, Comm. Math. Phys. 253 (2005), 511–533.

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity 19 (2006), 1495–1506.

C.Y. Sun, D.M. Cao and J.Q. Duan, Non-autonomous wave dynamics with memoryasymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. Ser. B 9 (2008), 743–761.

C.Y. Sun and M.H. Yang, Dynamics of the nonclassical diffusion equations, Asymptot. Anal. 59 (2008), 51–81.

Y. Sun and Z.J. Yang, Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel, Nonlinear Anal. Real World Appl. 64 (2022), 103432.

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer–Verlag, New York, 1997.

Y.L. Xiao, Attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. (Engl. Ed.) 18 (2002), 273–276.

Y.Q. Xie, Q.S. Li and K.X. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal. Real World Appl. 31 (2016), 23–37.

M.H. Yang and C.Y. Sun, Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, Trans. Amer. Math. Soc. 361 (2009), 1069–1101.

M.H. Yang and C.Y. Sun, Attractors for strongly damped wave equations, Nonlinear Anal. Real World Appl. 10 (2009), 1097–1100.

M.H. Yang and C.Y. Sun, Exponential attractors for the strongly damped wave equations, Nonlinar Anal. Real World Appl. 11 (2010), 913–919.

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal. 3 (2004), 921–934.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-12-10

How to Cite

1.
MEI, Xinyu, SUN, Tao, XIE, Yongqin & ZHU, Kaixuan. Time-dependent global attractors for the strongly damped wave equations with lower regular forcing term. Topological Methods in Nonlinear Analysis [online]. 10 December 2022, T. 60, nr 2, s. 653–672. [accessed 24.3.2023]. DOI 10.12775/TMNA.2022.022.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Xinyu Mei, Tao Sun, Yongqin Xie, Kaixuan Zhu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop