Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions of fractional Laplace equations: Least period, axial symmetry and limit
  • Home
  • /
  • Periodic solutions of fractional Laplace equations: Least period, axial symmetry and limit
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Periodic solutions of fractional Laplace equations: Least period, axial symmetry and limit

Authors

  • Zhenping Feng
  • Zhuoran Du

DOI:

https://doi.org/10.12775/TMNA.2022.016

Keywords

Periodic solutions, fractional Laplacian, least positive period, axial symmetry, layer solution

Abstract

We are concerned with periodic solutions of the fractional Laplace equation \begin{equation*} {(-\partial_{xx})^s}u(x)+F'(u(x))=0 \quad \mbox{in }\mathbb{R}, \end{equation*} where $0< s< 1$. The smooth function $F$ is a double-well potential with wells at $+1$ and $-1$. We show that the value of least positive period is $2{\pi}\times({1}/{-F''(0)})^{{1}/({2s})}$. The axial symmetry of odd periodic solutions is obtained by moving plane method. We also prove that odd periodic solutions $u_{T}(x)$ converge to a layer solution of the same equation as periods $T\rightarrow+\infty$.

References

V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. 120 (2015), 262–284.

V. Ambrosio, Periodic solutions for the non-local operator (−∆+m2 )s −m2s with m ≥ 0, Topol. Methods Nonlinear Anal. 49 (2017), 75–103.

V. Ambrosio and G. Molica Bisci, Periodic solutions for nonlocal fractional equations, Commun. Pure Appl. Anal. 16 (2017), 331–344.

B. Barrios, J. Garcı́a-Melián and A. Quaas, Periodic solutions for the onedimensional fractional Laplacian, J. Differential Equations 267 (2019), 5258–5289.

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I. Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23–53.

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II. Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc. 367 (2015), 911–941.

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential equations 32 (2007), 1245–1260.

W.X. Chen, C.M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math. 308 (2017), 404–437.

Y.X. Cui and Z.Q. Wang, Multiple periodic solutions of a class of fractional Laplacian equations, Adv. Nonlinear Stud. 21 (2021), 41–56.

A. DelaTorre, M. del Pino, M.d.M. González and J.C. Wei, Delaunay-type singular solutions for the fractional Yamabe problem, Math. Ann. 369 (2017), 597–626.

Z.R. Du and C.F. Gui, Further study on periodic solutions of elliptic equations with a fractional Laplacian, Nonlinear Anal. 193 (2020), Ariticle ID 111417.

Z.R. Du and C.F. Gui, Periodic solutions of Allen–Cahn system with the fractional laplacian, Nonlinear Anal. 201 (2020), Ariticle ID 112061.

E. Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst Fourier (Grenoble) 32 (1982), 151–182.

E.B. Fabes, C.E. Kenig and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77–116.

Z.P. Feng and Z.R. Du, Periodic solutions of non-autonomous Allen–Cahn equations involving fractional Laplacian, Adv. Nonlinear Stud. 20 (2020), 725–737.

Z.P. Feng and Z.R. Du, Multiple periodic solutions of Allen–Cahn system involving fractional Laplacian, preprint.

C.F. Gui, J. Zhang and Z.R. Du, Periodic solutions of a semilinear elliptic equation with a fractional Laplacian, J. Fixed Point Theory Appl. 19 (2017), 363–373.

Y. Hu, Layer solutions for a class of semilinear elliptic equations involving fractional Laplacians, Bound. Value Probl. 2014 (2014), Article ID 41.

G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. 192 (2013), 673–718.

L. Roncal and P.R. Stinga, Fractional Laplacian on the torus, Commun. Contemp. Math. 18 (2016), 1550033, 26 pp.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-12-10

How to Cite

1.
FENG, Zhenping and DU, Zhuoran. Periodic solutions of fractional Laplace equations: Least period, axial symmetry and limit. Topological Methods in Nonlinear Analysis. Online. 10 December 2022. Vol. 60, no. 2, pp. 633 - 651. [Accessed 27 December 2025]. DOI 10.12775/TMNA.2022.016.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Zhenping Feng, Zhuoran Du

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop