Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence results for fractional Brezis-Nirenberg type problems in unbounded domains
  • Home
  • /
  • Existence results for fractional Brezis-Nirenberg type problems in unbounded domains
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Existence results for fractional Brezis-Nirenberg type problems in unbounded domains

Authors

  • Yansheng Shen
  • Xumin Wang

DOI:

https://doi.org/10.12775/TMNA.2022.009

Keywords

Fractional Brezis-Nirenberg type problems, unbounded cylinder type domains, fractional Poincaré inequalities, concentration-compactness principle

Abstract

In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains \begin{align*} \begin{cases} (-\Delta)^{s}u-\mu\dfrac{u}{|x|^{2s}}=\lambda u+|u|^{2^{\ast}_{s}-2}u & \text{in } \Omega,\\ u=0 & \text{in } \mathbb{R}^{N}\setminus \Omega, \end{cases} \end{align*} where $(-\Delta)^{s}$ is the fractional Laplace operator with $s\in(0,1)$, $\mu\in[0,\Lambda_{N,s})$ with $\Lambda_{N,s}$ the best fractional Hardy constant, $\lambda> 0$, $N> 2s$ and $2^{\ast}_{s}={2N}/({N-2s})$ denotes the fractional critical Sobolev exponent. By applying the fractional Poincaré inequality together with the concentration-compactness principle for fractional Sobolev spaces in unbounded domains, we prove an existence result to the equation.

References

V. Ambrosio, L. Freddi and R. Musina, Asymptotic analysis of the Dirichlet fractional Laplacian in domains becoming unbounded, J. Math. Anal. Appl. 485 (2020), 123845, 17 pp.

C.J. Amick and J.F. Toland, Nonlinear elliptic eigenvalue problems on an infinite stripglobal theory of bifurcation and asymptotic bifurcation, Math. Ann. 262 (1983), 313–342.

J. Bonder, N. Saintier and A. Silva, The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brézis–Nirenberg problem, NoDEA Nonlinear Differential Equations Appl. 25 (2018), paper no. 52, 25 pp.

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

P.C. Carrião and O.H. Miyagaki, Existence of non-trivial solutions of elliptic variational systems in unbounded domains, Nonlinear Anal. 51 (2002), 155–169.

F. Catrina and Z.Q. Wang, On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), 229–258.

Z. Chen and W. Zou, On an elliptic problem with critical exponent and Hardy potential, J. Differential Equations 252 (2012), 969–987.

M. Chipot and A. Rougirel, On the asymptotic behaviour of the eigenmodes for elliptic problems in domains becoming unbounded, Trans. Amer. Math. Soc. 360 (2008), 3579–3602.

I. Chowdhury, G. Csató, P. Roy and F. Sk, Study of fractional Poincaré inequalities on unbounded domains, Discrete Contin. Dyn. Syst. 41 (2021), 2993–3020, DOI: 10.3934/dcds. 2020394.

I. Chowdhury and P. Roy, Fractional Poincaré inequality for unbounded domains with finite ball condition: counter example, submitted, arXiv: 2001.04441.

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), 225–236.

M. Del Pino and P. L. Felmer, Least energy solutions for elliptic equations in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 126, (1996), 195–208.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy–Leray potential, Calc. Var. Partial Differential Equations 55 (2016), art. 99, 29 pp.

M.J. Esteban, Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex rings, Nonlinear Anal. 7 (1983), 365–379.

M.J. Esteban and P.L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 93 (1982/83), 1–14.

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations 177 (2001), 494-522.

R.L. Frank, H.E. Lieb and R. Seiringer, Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21 (2008), 925–950.

N. Ghoussoub and F. Robert, Hardy-singular boundary mass and Sobolev-critical variational problems, Anal. Partial Differential Equations, 10 (2017), 1017–1079.

N. Ghoussoub and F. Robert, The Hardy–Schrödinger operator with interior singularity: the remaining cases, Calc. Var. Partial Differential Equations 56 (2017), paper no. 149, 54 pp.

N. Ghoussoub, F. Robert, S. Shakerian and M. F. Zhao, Mass and asymptotics associated to fractional Hardy–Schrödinger operators in critical regimes, Comm. Partial Differential Equations 43 (2018), 859–892.

I.W. Herbst, Spectral theory of the operator (p2 + m2 )1/2 − Ze2 /r, Comm. Math. Phys. 53 (1977), 285–294.

E. Jannelli, The role played by space dimension in elliptic critical problems, J. Differential Equations 156 (1999), 407–426.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoam. 1 (1985), no. 1, 145–201.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 2, Rev. Mat. Iberoam. 1 (1985), no. 2, 45–121.

C. Mouhot, E. Russ and Y. Sire, Fractional Poincaré inequalities for general measures, J. Math. Pures Appl. 95 (2011), 72–84.

M. Ramos, Z.-Q. Wang and M. Willem, Positive solutions for elliptic equations with critical growth in unbounded domains, Calculus of Variations and Differential Equations, Chapman Hall/CRC Press, Boca Raton, 2000, pp. 192–199.

D. Ruiz and M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations 190 (2003), 524–538.

R. Servadei and E. Valdinoci, A Brézis–Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 (2013), 2445–2464.

R. Servadei and E. Valdinoci, The Brézis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.

Y. Shen, Multiplicity of positive solutions to a critical fractional equation with Hardy potential and concave-convex nonlinearities, Complex Var. Elliptic Equ., DOI: 10.1080/17476933.2021.1916922.

J. Tan, The Brézis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), 21–41.

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations 1 (1996), 241–264.

M. Willem, Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, 1996.

K. Yeressian, Asymptotic behavior of elliptic nonlocal equations set in cylinders, Asymptot. Anal. 89 (2014), 21–35.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-12-10

How to Cite

1.
SHEN, Yansheng and WANG, Xumin. Existence results for fractional Brezis-Nirenberg type problems in unbounded domains. Topological Methods in Nonlinear Analysis. Online. 10 December 2022. Vol. 60, no. 2, pp. 517 - 546. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.009.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Yansheng Shen, Xumin Wang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop