Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Regularization methods for solving the split feasibility problem with multiple output sets in Hilbert spaces
  • Home
  • /
  • Regularization methods for solving the split feasibility problem with multiple output sets in Hilbert spaces
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Regularization methods for solving the split feasibility problem with multiple output sets in Hilbert spaces

Authors

  • Simeon Reich https://orcid.org/0000-0003-0780-1559
  • Truong Minh Tuyen

DOI:

https://doi.org/10.12775/TMNA.2022.020

Keywords

Hilbert space, metric projection, regularization, split feasibility problem

Abstract

We study the split feasibility problem with multiple output sets in Hilbert spaces. In order to solve this problem, we introduce several new iterative processes by using the Tikhonov regularization method.

References

Y. Alber and I. Ryazantseva, Nonlinear Ill-Posed Problems of Monotone Type, Springer, Dordrecht, 2006.

D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006 (2006), 1–39.

C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems 18 (2002), 441–453.

C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems 18 (2004), 103–120.

C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759–775.

Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221–239.

Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its application, Inverse Problems 21 (2005), 2071–2084.

Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problems, Numer. Algorithms 59 (2012), 301–323.

V. Dadashi, Shrinking projection algorithms for the split common null point problem, Bull. Aust. Math. Soc. 99 (2017), 299–306.

G.Z. Eskandani, M. Raeisi and T.M. Rassias, A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance, J. Fixed Point Theory Appl. 20 (2018), 132.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, Cambridge, UK, 1990.

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.

G.J. Minty, Monotone (non-linear) operators in Hilbert space, Duke Math. J. 2 (1962), 341–346.

S. Reich, Extension problems for accretive sets in Banach spaces, J. Functional Anal. 26 (1977), 378–395.

S. Reich, M.T. Truong and T.N.H. Mai, The split feasibility problem with multiple output sets in Hilbert spaces, Optim. Lett. 14 (2020), 2335–2353.

S. Reich, T.M. Tuyen and M.T.N. Ha, An optimization approach to solving the split feasibility problem in Hilbert spaces, J. Global Optim. 79 (2021), 837–852.

R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216.

S. Takahashi and W. Takahashi, The split common null point problem and the shrinking projection method in Banach spaces, Optimization 65 (2016), 281–287.

W. Takahashi, The split feasibility problem and the shrinking projection method in Banach spaces, J. Nonlinear Convex Anal. 16 (2015), 1449–1459.

W. Takahashi, The split common null point problem in Banach spaces, Arch. Math. 104 (2015), 357–365.

F. Wang and H.-K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal. 74 (2011), 4105–4111.

H.-K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), 631–643.

H.-K. Xu, A variable Krasnosel’skiı̆–Mann algorithm and the multiple-set split feasibility problem, Inverse Problems 22 (2006), 2021–2034.

H.-K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces, Inverse Problems 26 (2010), 105018.

Q. Yang, The relaxed CQ algorithm for solving the split feasibility problem, Inverse Problems 20 (2004), 1261–1266.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-11-29

How to Cite

1.
REICH, Simeon and TUYEN, Truong Minh. Regularization methods for solving the split feasibility problem with multiple output sets in Hilbert spaces. Topological Methods in Nonlinear Analysis. Online. 29 November 2022. Vol. 60, no. 2, pp. 547 - 563. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2022.020.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Simeon Reich, Truong Minh Tuyen

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop