Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Parametrised topological complexity of group epimorphisms
  • Home
  • /
  • Parametrised topological complexity of group epimorphisms
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

Parametrised topological complexity of group epimorphisms

Authors

  • Mark Grant

DOI:

https://doi.org/10.12775/TMNA.2021.056

Keywords

Parametrised topological complexity, aspherical space, group epimorphisms

Abstract

We show that the parametrised topological complexity of Cohen, Farber and Weinberger gives an invariant of group epimorphisms. We extend various bounds for the topological complexity of groups to obtain bounds for the parametrised topological complexity of epimorphisms. Several applications are given, including an alternative computation of the parametrised topological complexity of the planar Fadell-Neuwirth fibrations which avoids calculations involving cup products. We also prove a homotopy invariance result for parametrised topological complexity of fibrations over different bases.

References

M. Arkowitz and J. Strom, The sectional category of a map Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 4, 639–652.

R. Bieri and B. Eckmann, Groups with homological duality generalizing Poincaré duality, Invent. Math. 20 (1973), 103–124.

Z. Blaszczyk, J. Carrasquel and A. Espinosa, On the sectional category of subgroup inclusions and Adamson cohomology theory, J. Pure Appl. Algebra 226 (2022), DOI:10.1016/j.jpaa.2021.106959.

D.C. Cohen, M. Farber and S. Weinberger, Topology of parametrised motion planning algorithms, SIAM J. Appl. Algebra Geom. 5 (2021), no. 2, 229–249.

D.C. Cohen, M. Farber and S. Weinberger, Parametrised topological complexity of collision-free motion planning in the plane, J. Topol. Anal. (2021), DOI: 10.1142/S1793525321500631.

D.C. Cohen and A.I. Suciu, Homology of iterated semidirect products of free groups, J. Pure Appl. Algebra 126 (1998), no. 1–3, 87–120.

A. Dranishnikov, On topological complexity of hyperbolic groups, Proc. Amer. Math. Soc. 148 (2020), no. 10, 4547–4556.

S. Eilenberg and T. Ganea, On the Lusternik–Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517–518.

E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.

M. Farber, Topology of robot motion planning, Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185–230.

M. Farber, M. Grant, G. Lupton and J. Oprea, Bredon cohomology and robot motion planning, Algebr. Geom. Topol. 19 (2019), no. 4, 2023–2059.

M. Farber and S. Mescher, On the topological complexity of aspherical spaces, J. Topol. Anal. 12 (2020), no. 2, 293–319.

J.M. Garcı́a Calcines, Formal aspects on parametrised topological complexity and its pointed version, arXiv:2103.10214.

M. Grant, Topological complexity, fibrations and symmetry, Topology Appl. 159 (2012), 88–97.

M. Grant, G. Lupton and J. Oprea, New lower bounds for the topological complexity of aspherical spaces, Topology Appl. 189 (2015), 78–91.

J.P. May, A Concise Course in Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999.

J.P. May and K. Ponto, More Concise Algebraic Topology. Localization, Completion, and Model Categories, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012.

A. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl. 55 (1966), 49–140.

J.R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334.

R. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
GRANT, Mark. Parametrised topological complexity of group epimorphisms. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 287 - 303. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2021.056.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Mark Grant

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop