Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Gutierrez-Sotomayor flows on singular surfaces
  • Home
  • /
  • Gutierrez-Sotomayor flows on singular surfaces
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

Gutierrez-Sotomayor flows on singular surfaces

Authors

  • Ketty A. de Rezende https://orcid.org/0000-0003-1652-5007
  • Nivaldo G. Grulha Jr. https://orcid.org/0000-0003-4977-9070
  • Dahisy V. de S. Lima https://orcid.org/0000-0002-7654-822X
  • Murilo A.J. Zigart https://orcid.org/0000-0001-6626-5704

DOI:

https://doi.org/10.12775/TMNA.2021.054

Keywords

Conley index, isolating blocks, Lyapunov graph, Poincaré-Hopf inequalities, cone, cross caps, double, triple singularities

Abstract

In this work, we consider the collection of necessary homological conditions previously obtained via Conley index theory for a Lyapunov semi-graph to be associated to a Gutierrez-Sotomayor flow on an isolating block and address their sufficiency. These singular flows include regular $\mathcal{R}$, cone $\mathcal{C}$, Whitney $\mathcal{W}$, double $\mathcal{D}$ and triple $\mathcal{T}$ crossing singularities. Local sufficiency of these conditions are proved in the case of Lyapunov semi-graphs along with a complete characterization of the branched $1$-manifolds that make up the boundary of the block. As a consequence, global sufficient conditions are determined for Lyapunov graphs labelled with $\mathcal{R}$, $\mathcal{C}$, $\mathcal{W}$, $\mathcal{D}$ and $\mathcal{T}$ and with minimal weights to be associated to Gutierrez-Sotomayor flows on closed singular $2$-manifolds. By removing the minimality condition, we prove other global realizability results by requiring that the Lyapunov graph be labelled with $\mathcal{R}$, $\mathcal{C}$ and $\mathcal{W}$ singularities or that it be linear.

References

C.C. Conley, Isolated Invariant Sets and the Morse Index, No. 38, American Mathematical Soc. 1978.

R.D. Franzosa and K.A. de Rezende, Lyapunov graphs and flows on surfaces, Trans. Amer. Math. Soc. (1993), 767–784.

C.G. Gibson, Singular Points of Smooth Mappings, vol. 25, Pitman Publishing, 1979.

C. Gutierrez and J. Sotomayor, Stable vector fields on manifolds with simple singularities, Proc. London Math. Soc. 3 (1982), no. 1, 97–112.

S. Izumiya and W.L. Marar, On topologically stable singular surfaces in a 3-manifold, J. Geom. 52 (1995), no. 1–2, 108–119.

D.V.S. Lima, S.A. Raminelli and K.A. de Rezende, Homotopical cancellation theory for Gutierrez–Sotomayor singular flows, J. Singul. 23 (2021), 33–91.

J. Llibre, P.R. da Silva and M.A. Teixeira, Sliding vector fields for non-smooth dynamical systems having intersecting switching manifolds, Nonlinearity 28 (2015), no. 2, 493.

H.R.M. López and K.A. de Rezende, Conley theory for Gutierrez–Sotomayor fields, J. Singul. 22 (2020), 241–277.

M.M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), no. 2, 101–120.

R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), no. 2, 240–284.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
DE REZENDE, Ketty A., GRULHA JR., Nivaldo G., LIMA, Dahisy V. de S. and ZIGART, Murilo A.J. Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 221 - 265. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.054.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Ketty A. de Rezende, Nivaldo G. Grulha Jr., Dahisy V. de S. Lima, Murilo A.J. Zigart

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop