Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A priori bounds and existence of positive solutions for fractional Kirchhoff equations
  • Home
  • /
  • A priori bounds and existence of positive solutions for fractional Kirchhoff equations
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

A priori bounds and existence of positive solutions for fractional Kirchhoff equations

Authors

  • Pengfei Li
  • Junhui Xie
  • Dan Mu

DOI:

https://doi.org/10.12775/TMNA.2021.053

Keywords

Fractional Kirchhoff equations, existence of solution, a priori bounds, Leray-Schauder degree theory

Abstract

In this paper, we are concerned with the following Kirchhoff equations involving the fractional Laplacian, \begin{equation}\label{0001} \begin{cases} \left(a+b[u]^2_s\right)(-\Delta)^su=u^p+h(x,u,\nabla u), &x\in\Omega,\\ u> 0, &x\in\Omega,\\ u=0, &x\notin\Omega,\\ \end{cases} \end{equation} where $\Omega$ is a smooth bounded domain in ${\mathbb{R}}^N(N\geq3)$, $0< s< 1$, $a,b> 0$ and $0< p< ({N+2s})/({N-2s})$ are constants. Under suitable conditions on $h(x,u,\nabla u)$, using the defining integral, we carry on a blowing-up and rescaling argument directly on the nonlocal equations and thus obtain a priori estimates on the positive solutions. Moreover, existence results for positive solutions of problem (\ref{0001}) are proved by Leray-Schauder degree theory and the above estimates.

References

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2004.

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305–350.

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133–6162.

B. Barrios, L.M. Del Pezzo, J. Garcı́a-Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems, Mathematics 34 (2018), 195–220.

J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1998.

J.P. Bouchaud and A. Georges, Anomalous diffusion in disordered media. Statistical mechanics, models and physical applications, Phys. Rep. 195 (1990), 127–293.

C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh 143 (2013), 39–71.

L. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), 1067–1075.

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.

K. Chang, Methods of Nonlinear Analysis, Monographs in Mathematics, Springer–Verlag, Berlin, 2005.

W. Chen, W. Dai and G. Qin, Liouville type theorems, a priori estimates and existence of solutions for critical and super-critical order Hardy–Hénon type equations in Rn , arXiv:1808.06609, 36 pp.

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math. 274 (2015), 167–198.

W. Chen and C. Li, Regularity of solutions for a system of integral equations, Comm. Pure Appl. Anal. 4 (2005), 1–8.

W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math. 27 (2016), 1650064.

W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math. 308 (2017), 404–437.

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330–343.

W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations 260 (2016), 2758–2785.

Q. Dai, E. Lan and F. Shi, A priori bounds for positive solutions of Kirchhoff type equations, Comput. Math. Appl. 76 (2018), 1525–1534.

W. Dai and G. Qin, Liouville type theorems fractional and higher order Hénon–Hardy type equations via the method of scaling spheres, Int. Math. Res. Not. IMRN, 70 pp., DOI:10.1093/imrn/rnac079.

D. de Figueiredo and J. Yang, A priori bounds for positive solutions of a nonvariational elliptic system, Comm. Partial Differential Equations 26 (2001), 2305–2321.

A. Fiscella and P. Mishra, The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms, Nonlinear Anal. 186 (2019), 6–32.

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014), 156–170.

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883–901.

Q. Guan, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys. 266 (2006), 289–329.

H. Jin and W. Liu, Fractional Kirchhoff equation with a general critical nonlinearity, Appl. Math. Lett. 74 (2017), 140–146.

P. Mishra and K. Sreenadh, Existence and multiplicity results for fractional p-Kirchhoff equation with sign changing nonlinearities, Adv. Pure Appl. Math. 7 (2016), 97–114.

L. Zhang, M. Yu and J. He, A Liouville theorem for a class of fractional systems in Rn+, J. Differential Equations 263 (2017), 6025–6065.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
LI, Pengfei, XIE, Junhui and MU, Dan. A priori bounds and existence of positive solutions for fractional Kirchhoff equations. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 203 - 220. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.053.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Pengfei Li, Junhui Xie, Dan Mu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop