Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Array
  • Strona domowa
  • /
  • Array
  1. Strona domowa /
  2. Archiwum /
  3. Vol 59, No 2B (June 2022) /
  4. Articles

Array

Autor

  • https://orcid.org/0000-0002-0866-3402
  • https://orcid.org/0000-0002-2221-9180

DOI:

https://doi.org/10.12775/TMNA.2021.036

Słowa kluczowe

Array

Abstrakt

Array

Bibliografia

C.O. Alves, A.B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations 55 (2016).

C.O. Alves, V.D. Rădulescu and L.S. Tavares, Generalized Choquard equations driven by nonhomogeneous operators, Mediterr. J. Math. 16 (2019).

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math. 10 (2008), 391–404.

A. Azzollini, P. d’Avenia and A. Pomponio, On the Schrödinger–Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 779–791.

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl. 345 (2008), 90–108.

V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533–533.

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), 283–293.

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 (2002), 409–420.

R. Benguria, H. Brezis and E. H. Lieb, The Thomas–Fermi–von Weizsäcker theory of atoms and molecules, Commun. Math. Phys. 79 (1981), 167–180.

H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1978), 137–151.

H. Brezis and E. Lieb, A Relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Commun. Pure Appl. Math. 36 (1983), 437–477.

J. Byeon and Z.Q. Wang, Standing waves with a critical frequency for nonlinear schrodinger equations, Calc. Var. Partial Differential Equations 18 (2003), 207–219.

L. Cai and F.B. Zhang, The Brezis–Nirenberg type double critical problem for the Choquard equation, SN Partial Differ. Equ. Appl. 1 (2020), 32 p.

L. Cai and F.B. Zhang, The Brezis–Nirenberg type double critical problem for a class of Schrödinger–Poisson equations, Electron. Res. Arch. 29 (2020), 2475–2488.

G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger–Poisson systems, Nonlinearity 29 (2016), 3103–3119.

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger–Poisson systems, J. Differential Equations 248 (2010), 521–543.

S.T. Chen, X.H. Tang and J.Y. Wei, Nehari-type ground state solutions for a Choquard equation with doubly critical exponents, Adv. Nonlinear Stud. 10 (2020), 152–171.

S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations 160 (2000), 118–138.

T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893–906.

T. D’Aprile and J.C. Wei, On bound states concentrating on spheres for the Maxwell–Schrödinger equation, SIAM J. Math. Anal. 37 (2005), 321–342.

T. D’Aprile and J.C. Wei, Standing waves in the Maxwell–Schrödinger equation and an optimal configuration problem, erentialCalc. Var. Partial Differ. Equations 25 (2005), 105–137.

Y.H. Ding, F.S. Gao and M.B. Yang Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity 33 (2020), 6695–6728.

Y.H. Ding and F.H. Lin, Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var. Partial Differentail Equations 30 (2007), 231–24.

X.J. Feng, Ground state solution for a class of Schrödinger–Poisson-type systems with partial potential, Z. Angew. Math. Phys. 71 (2020).

X.J. Feng, Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems, Z. Angew. Math. Phys. 71 (2020).

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397–408.

F.S. Gao and M.B. Yang, The Brezis–Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China. Math. 61 (2018), 1219–1242.

F.S. Gao, M.B. Yang and J.Z. Zhou Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential, Nonlinear Anal. 195 (2020).

M. Ghergu and G. Singh, On a class of mixed Choquard–Schrödinger–Poisson systems, Discret. Contin. Dyn. Syst. 12 (2019), 297–309.

H. Guo and D. Wu, Nodal solutions for the Schrödinger–Poisson equations with convolution terms, Nonlinear Anal. 196 (2020).

X.M. He and W.M. Zou, Existence and concentration of ground states for Schrödinger–Poisson equations with critical growth, J. Math. Phys. 53 (2012).

X.M. He and W.M. Zou, Multiplicity of concentrating positive solutions for Schrödinger–Poisson equations with critical growth, Nonlinear Anal. 170 (2018), 142–170.

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger–Poisson problem with potentials, Adv. Nonlinear Stud. 8 (2008).

Y.S. Jiang and H. S. Zhou, Schrödinger–Poisson system with steep potential well, J. Differential Equations 251 (2011), 582–608.

F.Y. Li, L.L.Y.Y. Huang and Z.P. Liang, Ground state for Choquard equation with doubly critical growth nonlinearity, Electron. J. Qual. Theory Differ. Equ. (2019), 1–15.

F.Y. Li, Y.H. Li and J.P. Shi, Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent, Commun. Contemp. Math. 16 (2014).

G.B. Li, S.J. Peng and S.S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system, Commun. Contemp. Math. 12 (2010), 1069–1092.

X.F. Li and S.W. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math. (2019).

X.F. Li, S.W. Ma and G. Zhang, Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Anal. 45 (2019), 1–25.

E.H. Lieb, Thomas–Fermi and related theories of atoms and molecules, Rigorous Atomic and Molecular Physics, Springer, US, 1981, pp. 213–308.

E.H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math. 118 (1983), 349–374.

P.L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Commun. Math. Phys. 109 (1987), 33–97.

H.D. Liu, Positive solutions of an asymptotically periodic Schrödinger–Poisson system with critical exponent, Nonlinear Anal. 32 (2016), 198–212.

J. Liu, J.F. Liao and C.L. Tang, Ground state solution for a class of Schrödinger equations involving general critical growth term, Nonlinearity 30 (2017), 899–911.

Z.L. Liu, Z.Q. Wang and J.J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system, Ann. Mat. Pura Appl. 195 (2015), 775–794.

P. Markowich, Semiconductor Equations, Springer Vienna, Vienna, 1990.

V. Moroz and J.V. Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2014), 6557–6579.

D. Ruiz, The Schrödinger–Poisson equation under the effect of a onlinear local term, J. Funct. Anal. 237 (2006), 655–674.

D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger–Poisson–Slater problem around a local minimum of the potential, Rev. Mat. Iberoam. (2011), 253–271.

J. Seok, Nonlinear Choquard equations: Doubly critical case, Appl. Math. Lett. 76 (2018), 148–156.

B. Sirakov, Standing wave solutions of the nonlinear Schrodinger equations in RN , Ann. Mat. Pura Appl. 183 (2002), 73–83.

Y. Su, New result for nonlinear Choquard equations: Doubly critical case, Appl. Math. Lett. 102 (2020).

Y. Su, L. Wang, H.B. Chen and S.L. Liu, Multiplicity and concentration results for fractional Choquard equations: Doubly critical case, Nonlinear Anal. 198 (2020).

Z.P. Wang and H.S. Zhou, Positive solution for a nonlinear stationary Schrödinger–Poisson system in R3 , Discret. Contin. Dyn. Syst. 18 (2007), 809–816.

Z.P. Wang and H.S. Zhou, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3 , Calc. Var. Partial Differerential Equations 52 (2014), 927–943.

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1997.

W.H. Xie, H.B. Chen and T.F. Wu, Ground state solutions for a class of Schrödinger–Poisson systems with Hartree-type nonlinearity, Appl. Anal. (2019), 1–27.

M.B. Yang and Y.H. Ding, Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Commun. Pure Appl. Anal. 12 (2012), 771–783.

F.B. Zhang and L. Cai, Bound and ground states for a class of Schrödinger–Poisson systems, Bound. Value Probl. (2019), article no. 126.

H. Zhang, J.X. Xu and F.B. Zhang, Multiplicity of semiclassical states for Schrödinger–Poisson systems with critical frequency, Z. Angew. Math. Phys. 71 (2019).

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2022-03-13

Jak cytować

1.
& . Topological Methods in Nonlinear Analysis [online]. 13 marzec 2022, T. 59, nr 2B, s. 779–817. [udostępniono 3.7.2025]. DOI 10.12775/TMNA.2021.036.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 59, No 2B (June 2022)

Dział

Articles

Licencja

Prawa autorskie (c) 2022 Array

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa