Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The Airy equations with impulsive effect: multi-valued nonlinear perturbations
  • Home
  • /
  • The Airy equations with impulsive effect: multi-valued nonlinear perturbations
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

The Airy equations with impulsive effect: multi-valued nonlinear perturbations

Authors

  • Zhong-Xin Ma https://orcid.org/0000-0001-7583-5326
  • Rong-Nian Wang https://orcid.org/0000-0002-8720-9151
  • Yang-Yang Yu https://orcid.org/0000-0002-7409-7429

DOI:

https://doi.org/10.12775/TMNA.2021.033

Keywords

Cauchy problem of a third-order (in space) PDE, multi-valued perturbation, impulsive effect, solution set, $R_{\delta}$-structure, $R_{\delta}$-map

Abstract

We study the topological regularity of solutions to the Cauchy problem of a (spatial) third-order partial differential equation with a multi-valued perturbation and an impulsive effect. In the framework of the functional space, the principal part of the differential operator corresponds to an Airy operator generating a noncompact $C_0$-group of unitary operators. Our attention is concerned with the $R_\delta$\text{-}structure of the solution set for the Cauchy problem. Geometric aspects of the corresponding solution map are also considered. In our main results, no any compactness condition on the impulsive functions is needed. Moreover, we give illustrating examples for the nonlinearity and impulsive functions.

References

N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations 246 (2009), 3834–3863.

Z. Agur, L. Cojocaru, G. Mazaur, R.M. Anderson and Y.L. Danon, Pulse mass measles vaccination across age cohorts, Proc. Natl. Acad. Sci. USA 90 (1993), 11698–11702.

J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer Academic Publishers, Dordrecht, 2003.

J. Andres and M. Pavlačková, Topological structure of solution sets to asymptotic boundary value problems, J. Differential Equations 248 (2010), 127–150.

N. Aronszajn, Le correspondant topologique de l’unicité dans la théorie des équations différentielles, Ann. of Math. 43 (1942), 730–738.

I. Benedetti and P. Rubbioni, Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay, Topol. Methods Nonlinear Anal. 32 (2008), 227–245.

D. Bothe, Multi-valued perturbations of m-accretive differential inclusions, Israel J. Math. 108 (1998), 109–138.

K.C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer–Verlag, Berlin, 2005.

D.H. Chen, R.N. Wang and Y. Zhou, Nonlinear evolution inclusions: Topological characterizations of solution sets and applications, J. Funct. Anal. 265 (2013), 2039–2073.

K. Deimling, Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 1, Walter de Gruyter & Co., Berlin, 1992.

J. Diestel, W.M. Ruess and W. Schachermayer, Weak compactness in L1 (µ; X), Proc. Amer. Math. Soc. 118 (1993), 447–453.

S. Djebali, L. Górniewicz and A. Ouahab, Filippov–Ważewski theorems and structure of solution sets for first order impulsive semilinear functional differential inclusions, Topol. Methods Nonlinear Anal. 32 (2008), 261–312.

S. Djebali, L. Górniewicz and A. Ouahab, First-order periodic impulsive semilinear differential inclusions: existence and structure of solution sets, Math. Comput. Modelling 52 (2010), 683–714.

S. Djebali, L. Górniewicz and A. Ouahab, Topological structure of solution sets for impulsive differential inclusions in Fréchet spaces, Nonlinear Anal. 74 (2011), 2141–2169.

S. Djebali, L. Górniewicz and A. Ouahab, Solution Sets for Differential Equations and Inclusions, Walter de Gruyter & Co., Berlin, 2013.

G. Gabor and A. Grudzka, Structure of the solution set to impulsive functional differential inclusions on the half-line, Nonlinear Differ. Equ. Appl. 19 (2012), 609–627.

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, second edition, Topological Fixed Point Theory and Its Applications, vol. 4, Springer, Dordrecht, 2006.

J.R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclusions, A Fixed Point Approach, De Gruyter Series in Nonlinear Analysis and Applications, vol. 20, De Gruyter, Berlin, 2013.

S.C. Hu and N.S. Papageorgiou, On the topological regularity of the solution set of differential inclusions with constraints, J. Differential Equations 107 (1994), 280–289.

D.M. Hyman, On decreasing sequence of compact absolute retracts, Fund. Math. 64 (1969), 91–97.

M. Kamenskiı̆, V. Obukhovskiı̆ and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter & Co., Berlin, 2001.

H. Kneser, Uber die Lösungen eine system gewöhnlicher differential Gleichungen das der lipschitzchen Bedingung nicht genügt, S.B. Preuss. Akad. Wiss. Phys. Math. Kl. 4 (1923), 171–174.

E. Kruger-Thiemr, Formal theory of drug dosage regiments I, J. Theoret. Biol. 13 (1966), 212–235.

E. Kruger-Thiemr, Formal theory of drug dosage regiments II, J. Theoret. Biol. 23 (1969), 169–190.

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, New York, 2009.

L. Malaguti and P. Rubbioni, Nonsmooth feedback controls of nonlocal dispersal models, Nonlinearity 29 (2016), 823–850.

V.D. Milman and A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J. 1 (1960), 233–237.

A. Ülger, Weak compactness in L1 (µ; X), Proc. Amer. Math. Soc. 113 (1991), 143–149.

I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, second edition, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, Longman and John Wiley & Sons, New York, 1995.

I.I. Vrabie, C0 -Semigroups and Applications, North-Holland Publishing Co., Amsterdam, 2003.

R.N. Wang, Q.H. Ma and Y. Zhou, Topological theory of non-autonomous parabolic evolution inclusions on a noncompact interval and applications, Math. Ann. 362 (2015), 173–203.

R.N. Wang and Z.X. Ma, The well-posedness for a class of nonlinear evolution equations with a Carathéodory type perturbation, submitted.

R.N. Wang, Z.X. Ma and A. Miranville, Topological structure of the solution sets for a nonlinear delay evolution, Int. Math. Res. Not. IMRN, (2021), DOI:10.1093/imrn/rnab176.

Q.J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), 213–237.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-13

How to Cite

1.
MA, Zhong-Xin, WANG, Rong-Nian and YU, Yang-Yang. The Airy equations with impulsive effect: multi-valued nonlinear perturbations. Topological Methods in Nonlinear Analysis. Online. 13 March 2022. Vol. 59, no. 1, pp. 359 - 384. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2021.033.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Zhong-Xin Ma, Rong-Nian Wang, Yang-Yang Yu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop