Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological pressure for discontinuous semiflows and a variational principle for impulsive dynamical systems
  • Home
  • /
  • Topological pressure for discontinuous semiflows and a variational principle for impulsive dynamical systems
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

Topological pressure for discontinuous semiflows and a variational principle for impulsive dynamical systems

Authors

  • Lucas Backes https://orcid.org/0000-0003-3275-1311
  • Fagner B. Rodrigues https://orcid.org/0000-0002-7596-8214

DOI:

https://doi.org/10.12775/TMNA.2021.027

Keywords

Topological pressure, impulsive systems, variational principle

Abstract

We introduce four, a priori different, concepts of topological pressure for possibly discontinuous semiflows acting on a compact metric space and observe that they all agree with the classical one when restricted to the continuous setting. Moreover, for a class of \emph{impulsive semiflows}, which appear to be examples of discontinuous systems, we prove a variational principle. As a consequence, we conclude that for this class of systems the four notions of pressure coincide and, moreover, they also coincide with a concept of the topological pressure introduced in \cite{ACS17}.

References

L. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128 (1959), 873–875 (Russian).

J.F. Alves and M.P. Carvalho, Invariant probability measures and non-wandering sets for impulsive semiflows, J. Stat. Phys. 157 (2014), 1097–1113.

J.F. Alves, M. Carvalho and J. Siqueira, Equilibrium states for impulsive semiflows, J. Math. Anal. Appl. 451 (2017), 839–857.

J.F. Alves, M. Carvalho and C. Vásquez, A variational principle for impulsive semiflows, J. Differential Equations 259 (2015), 4229–4252.

A. Arbieto, C. Matheus and K. Oliveira, Equilibrium states for random non-uniformly expanding maps, Nonlinearity 17 (2004), 581–595.

V. Baladi, Correlation spectrum of quenched and annealed equilibrium states for random expanding maps, Comm. Math. Phys. 186 (1997), 671–700.

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergodic Theory Dynam. Systems 16 (1996), no. 5, 871–927.

E. Bonotto, Flows of characteristic 0+ in impulsive semidynamical systems, J. Math. Anal. Appl. 332 (2007), 81–96.

E. Bonotto, M. Bortolan, T. Caraballo and R. Collegari, A survey on impulsive dynamical systems, Electron. J. Qual. Theory Differ. Equ. (2016), 1–27.

R. Bowen, Some systems with unique equilibrium states, Math. Systems Theory 8 (1974), 193–202.

R. Bowen, Equilibrium states and the ergodic theory of Anosov difms, Bull. Acad. Sci. Math. 52 (2004), 71–80.

R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes Math. 470 (2008).

R. Bowen and D. Ruelle, The ergodic theory of axiom flows, Invent. Math. 29 (1975), 181–202.

A. Castro and P. Varandas, Equilibrium states for non-uniformly expanding maps: decay of correlations and strong stability, Ann. Inst. H. Poincaré 30 (2013), 225–249.

K. Ciesielskiol, On semicontinuity in impulsive dynamical systems, Bull. Pol. Acad. Sci. Math. 52 (2004), 71–80.

V. Climenhaga and D. Thompson, Unique equilibrium states for flows and homeomorphisms with non-uniform structure, Adv. Math. 303 (2016), 745–799.

M. Denker and M. Gordin, Gibbs measures for fibred systems, Adv. Mat. 148 (1999), 161–192.

E. Franco, Flows with unique equilibrium states, Amer. J. Math. 99 (1977), 486–514.

H.-O. Georgii, Gibbs Measures and Phase Transitions, Studies in Mathematics, De Gruyter, Berlin, New York, 1988.

N. Jaque and B. San Martı́n, Topological entropy for discontinuous semiflows, J. Differential Equations 266 (2019), 3580–3600.

N. Jaque and B. San Martı́n, Topological entropy and metric entropy for regular impulsive semiflows, preprint available at Arxiv.

V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations, Series in Modern Applied Mathematics, vol. 6, World Scientific Publishing Co. Inc., Teaneck, NJ, 1989.

R. Leplaideur, K. Oliveira and I. Rios, Equilibrium states for partially hyperbolic horseshoes, Ergodic Theory Dynam. Systems 31 (2011), 179–195.

Z.G. Li, C.Y. Wen and Y.C. Soh, Analysis and design of impulsive control systems, IEEE Trans. Automat. Control 46 (2001) 894–897.

A.O. Lopes, J.K. Mengue, J. Mohr and R.R. Souza, Entropy, pressure and duality for Gibbs plans in ergodic transport, Bull. Braz. Math. Soc. 46 (2015), 353–389.

Y.B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures Notes in Mathematics Series, Chicago, 1997.

I. Rios and J. Siqueira, On equilibrium states for partially hyperbolic horseshoes, Ergodic Theory Dynam. Systems 38 (2018), 301–335.

D. Ruelle, Statistical mechanics on a compact set with Z v action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237–251.

D. Ruelle and Ya.G. Sinaı̆, From dynamical systems to statistical mechanics and back, Phys. A 140 (1986), 1–8.

K. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy, Commonwealth Fund Program, W.W. Norton, 1994.

P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 555–593.

M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge University Press, 2016.

P. Walters, A variational principle for the pressure of continuous maps, Amer. J. Math. 97 (1975), 937–971.

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer–Verlag, New York, 1982.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-13

How to Cite

1.
BACKES, Lucas and RODRIGUES, Fagner B. Topological pressure for discontinuous semiflows and a variational principle for impulsive dynamical systems. Topological Methods in Nonlinear Analysis. Online. 13 March 2022. Vol. 59, no. 1, pp. 303 - 330. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2021.027.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Lucas Backes, Fagner B. Rodrigues

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop