Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Conley index theory and the attractor-repeller decomposition for differential inclusions
  • Home
  • /
  • Conley index theory and the attractor-repeller decomposition for differential inclusions
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

Conley index theory and the attractor-repeller decomposition for differential inclusions

Authors

  • Cameron Thieme https://orcid.org/0000-0001-6396-5019

DOI:

https://doi.org/10.12775/TMNA.2021.018

Keywords

Conley index, differential inclusions, Filippov, attractor-repeller pair

Abstract

The Conley index theory is a powerful topological tool for describing the basic structure of dynamical systems. One important feature of this theory is the attractor-repeller decomposition of isolated invariant sets. In this decomposition, all points in the invariant set belong to the attractor, its associated dual repeller, or a connecting region. In this connecting region, points tend towards the attractor in forwards time and the repeller in backwards time. This decomposition is also, in a certain topological sense, stable under perturbation. Conley theory is well-developed for flows and homeomorphisms, and has also been extended to some more abstract settings such as semiflows and relations. In this paper we aim to extend the attractor-repeller decomposition, including its stability under perturbation, to continuous time set-valued dynamical systems. The most common of these systems are differential inclusions such as Filippov systems. Of particular importance for this generalization is the perturbation of Filippov systems to nearby smooth systems.

References

M. Benaim, J. Hofbauer and S. Sorin, Stochastic approximations and differential inclusions, SIAM J. Control Optim. 44 (2005), 328–348.

I.U. Bronstein and A.Ya. Kopanskiı̆, Chain recurrence in dynamical systems without uniqueness, Nonlinear Anal. 12 (1988), 147–154.

T. Caraballo and Y. Wang, Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete Contin. Dyn. Syst. Ser. S. 13 (2020), 2303–2326.

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math., vol. 38, 1978.

H.B. da Costa and J. Valero, Morse decompositions and Lyapunov functions for dynamically gradient multivalued semiflows, Nonlinear Dynam. 84 (2016), 19–34.

M. Di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems Theory and Applications, Springer, 2008.

A.F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Acad. Pub., 1988.

M.R. Jeffrey, Hidden dynamics in models of discontinuity and switching, Physica D 273 (2014), 34–45.

O.V. Kapustyan, P.O. Kasyanov and J. Valero, Chain recurrence and structure of ω-limit sets of multivalued semiflows, Commun. Pure Appl. Anal. 19 (2020), 2197–2217.

A.V. Kapustian and J. Valero, Attractors of multivalued semiflows generated by differential inclusions and their approximations, Abstr. Appl. Anal. 5 (2000), no. 1, 33–46.

D. Li, Morse decompositions for general dynamical systems and differential inclusions with applications to control systems. SIAM J. Control Optim. 46 (2007), 35–60.

R. McGehee, Non-unique Dynamical Systems, Midwest Dynamical Systems Conference. Minneapolis, Minnesota, 3 November, 2018.

V.S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions. Set-Valued Anal. 6 (1998), 83–111.

K. Mischaikow, The Conley Index Theory: A Brief Introduction. Banach Center Publ. 47 (1999), 9–19.

K. Mischaikow and M. Mrozek, Conley Index Theory, Handbook of Dynamical Systems II: Towards Applications, (B. Fiedler, ed.) North-Holland, 2002.

M. Mrozek, A cohomological index of Conley type for multi-valued admissible flows, J. Differential Equations 84 (1990), 15–51.

E. Roxin, On generalized dynamical systems defined by contingent equations, J. Differential Equations 1 (1965), 188–205.

C. Thieme, Multiflows: A new technique for Filippov systems and differential inclusions, ArXiv (2019).

C. Thieme, Isolating neighborhoods and Filippov systems: extending Conley theory to differential inclusions, Topol. Methods Nonlinear Anal. (accepted).

P. Welander, A simple heat-salt oscillator, Dynamics of Atmospheres and Oceans 6 (1982), 233–242.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-06

How to Cite

1.
THIEME, Cameron. Conley index theory and the attractor-repeller decomposition for differential inclusions. Topological Methods in Nonlinear Analysis. Online. 6 March 2022. Vol. 59, no. 1, pp. 87 - 111. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.018.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Cameron Thieme

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop