Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory
  • Home
  • /
  • The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory
  1. Home /
  2. Archives /
  3. Vol 59, No 2A (June 2022) /
  4. Articles

The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory

Authors

  • Pierluigi Benevieri https://orcid.org/0000-0002-4365-5379
  • Alessandro Calamai https://orcid.org/0000-0001-9320-2426
  • Massimo Furi https://orcid.org/0000-0001-8677-6704
  • Maria Patrizia Pera https://orcid.org/0000-0003-2667-8875

DOI:

https://doi.org/10.12775/TMNA.2021.006

Keywords

Eigenvalues, eigenvectors, nonlinear spectral theory, degree theory

Abstract

Thanks to a connection between two completely different topics, the classical eigenvalue problem in a finite dimensional real vector space and the Brouwer degree for maps between oriented differentiable real manifolds, we are able to solve, at least in the finite dimensional context, a conjecture regarding global continuation in nonlinear spectral theory that we formulated in some recent papers. The infinite dimensional case seems nontrivial, and is still unsolved.

References

J C. Alexander, A Primer on Connectivity, Lecture Notes in Math., vol. 886, Springer–Verlag, Berlin, New York, 1981, pp. 455–483.

J. Appell, E. De Pascale and A. Vignoli, Nonlinear Spectral Theory, de Gruyter, Berlin, 2004.

P. Benevieri, A. Calamai, M. Furi and M.P. Pera, On the persistence of the eigenvalues of a perturbed Fredholm operator of index zero under nonsmooth perturbations, Z. Anal. Anwend. 36 (2017), no. 1, 99–128.

P. Benevieri, A. Calamai, M. Furi and M.P. Pera, Global continuation of the eigenvalues of a perturbed linear operator, Ann. Mat. Pura Appl. 197 (2018), no. 4, 1131–1149.

P. Benevieri, A. Calamai, M. Furi and M.P. Pera, Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue, Topol. Methods in Nonlinear Anal. 55 (2020), no. 1, 169–184.

P. Benevieri, A. Calamai, M. Furi and M.P. Pera, Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces, Z. Anal. Anwend., 39 (2020), no. 4, 475–497.

R. Chiappinelli, Isolated connected eigenvalues in nonlinear spectral theory, Nonlinear Funct. Anal. Appl. 8 (2003), no. 4, 557–579.

R. Chiappinelli, Approximation and convergence rate of nonlinear eigenvalues: Lipschitz perturbations of a bounded self-adjoint operator, J. Math. Anal. Appl. 455 (2017), no. 2, 1720–1732.

R. Chiappinelli, What do you mean by “nonlinear eigenvalue problems”?, Axioms 7 (2018), paper no. 39, 30 pp.

R. Chiappinelli, M. Furi and M.P. Pera, Normalized eigenvectors of a perturbed linear operator via general bifurcation, Glasg. Math. J. 50 (2008), no. 2, 303–318.

R. Chiappinelli, M. Furi and M.P. Pera, Topological persistence of the normalized eigenvectors of a perturbed self-adjoint operator, Appl. Math. Lett. 23 (2010), no. 2, 193–197.

R. Chiappinelli, M. Furi and M.P. Pera, Persistence of the normalized eigenvectors of a perturbed operator in the variational case, Glasg. Math. J. 55 (2013), no. 3, 629–638.

R. Chiappinelli, M. Furi and M.P. Pera, Topological persistence of the unit eigenvectors of a perturbed Fredholm operator of index zero, Z. Anal. Anwend. 33 (2014), no. 3, 347–367.

M. Furi and M.P. Pera, A continuation principle for periodic solutions of forced motion equations on manifolds and applications to bifurcation theory, Pacific J. Math. 160 (1993), no. 3, 219–244.

M.W. Hirsch, Differential Topology, Graduate Texts in Math., vol. 33, Springer–Verlag, Berlin, 1976.

C. Kuratowski, Topology, vol. 2, Academic Press, New York, 1968.

J.M. Milnor, Topology from the Differentiable Viewpoint, Univ. Press of Virginia, Charlottesville, 1965.

L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York, 1974.

E. Outerelo and J.M. Ruiz, Mapping degree theory, Graduate Studies in Math., Vol. 108, American Mathematical Soc., Providence, RI; Real Soc. Matemática Española, Madrid, 2009.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-13

How to Cite

1.
BENEVIERI, Pierluigi, CALAMAI, Alessandro, FURI, Massimo and PERA, Maria Patrizia. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis. Online. 13 December 2021. Vol. 59, no. 2A, pp. 499 - 523. [Accessed 27 June 2025]. DOI 10.12775/TMNA.2021.006.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2A (June 2022)

Section

Articles

License

Copyright (c) 2021 Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop