Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Some bifurcation results and multiple solutions for the $p$-Laplacian equation
  • Home
  • /
  • Some bifurcation results and multiple solutions for the $p$-Laplacian equation
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

Some bifurcation results and multiple solutions for the $p$-Laplacian equation

Authors

  • Mingzheng Sun
  • Jiabao Su
  • Leiga Zhao

DOI:

https://doi.org/10.12775/TMNA.2021.022

Keywords

Morse theory, p-Laplacian, bifurcation, multiple solutions

Abstract

In this paper, we first give some bifurcation results near the origin for the $p$-Laplacian equation, then multiple solutions are obtained based on the combination of perturbation methods in critical groups and minimax methods.

References

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349–381.

K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993.

K.-C. Chang, Methods in Nonlinear Analysis, Springer–Verlag, Berlin, 2005.

K.-C. Chang, A bifurcation theorem, J. Systems Sci. Math. Sci. 4 (1984), 191–195 (in Chinese).

K.-C. Chang and N. Ghoussoub, The Conley index and the critical groups via an extension of Gromoll–Meyer theory, Topol. Methods Nonlinear Anal. 7 (1996), 77–93.

K.-C. Chang and Z.-Q. Wang, Notes on the bifurcation theorem, J. Fixed Point Theory Appl. 1 (2007), 195–208.

G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian, J. Differential Equations 252 (2012), 2448–2468.

G. Dai and R. Ma, Global bifurcation, Berestycki’s conjecture and one-sign solutions for p-Laplacian, Nonlinear Anal. 91 (2013), 51–59.

N. Dancer and K. Perera, Some remarks on the Fučı́k spectrum of the p-Laplacian and critical groups, J. Math. Anal. Appl. 254 (2001), 164–177.

M.A. Del Pino and R.F. Manásevich, Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations 92 (1991), 226–251.

P. Drábek and Y. Huang, Bifurcation problems for the p-Laplacian in RN , Trans. Amer. Math. Soc. 349 (1997), 171–188.

G.L. Garza and A.J. Rumbos, Existence and multiplicity for a resonance problem for the p-Laplacian on bounded domain in RN , Nonlinear Anal. 70 (2009), 1193–1208.

P. Girg and P. Takáč, Bifurcations of positive and negative continua in quasilinear elliptic eigenvalue problems, Ann. Inst. Henri Poincaré 9 (2008), 275–327.

A. Iannizzotto, S. Liu, K. Perera and M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2016), 101–125.

M.-Y. Jiang, Critical groups and multiple solutions of the p-Laplacian equations, Nonlinear Anal. 59 (2004), 1221–1241.

M.-Y. Jiang and M. Sun, Some qualitative results of the critical groups for the p-Laplacian equations, Nonlinear Anal. 75 (2012), 1778–1786.

Q. Jiu and J. Su, Existence and multiplicity results for perturbations of the p-Laplacian, J. Math. Anal. Appl. 281 (2003), 587–601.

G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219.

P. Lindqvist, On the equation div(|∇u|p−2 ∇u) + λ|u|p−2 u = 0, Proc. Amer. Math. Soc. 109 (1990), 157–164.

A. Marino and C. Saccon, Some variational theorems of mixed type and elliptic problems with jumping nonlinearities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 631–665.

D. Motreanu, V.V. Motreanu and N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.

D. Mugnai, Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, Nonlinear Differ. Equ. Appl. 11 (2004), 379–391.

K. Perera, Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal. 21 (2003), 301–309.

K. Perera, M. Squassina and Y. Yang, Bifurcation and multiplicity results for critical p-Laplacian problems, Topol. Methods Nonlinear Anal. 47 (2016), 187–194.

P.H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978), 215–223.

P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.

P.H. Rabinowitz, J. Su and Z.-Q. Wang, Multiple solutions of superlinear elliptic equations, Rend. Lincei Mat. Appl. 18 (2007), 97–108.

K. Schmitt and Z.-Q. Wang, On bifurcation from infinity for potential operators, Differential Integral Equations 4 (1991), 933–943.

M. Sun and J. Su, Nontrivial solutions of a semilinear elliptic problem with resonance at zero, Appl. Math. Lett. 34 (2014), 60–64.

R. Tian, M. Sun and L. Zhao, Applications of Morse theory to some nonlinear elliptic equations with resonance at zero, Nonlinear Anal. 113 (2015), 87–93.

Z.-Q. Wang, On a superlinear elliptic equation. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 43–57.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-02

How to Cite

1.
SUN, Mingzheng, SU, Jiabao and ZHAO, Leiga. Some bifurcation results and multiple solutions for the $p$-Laplacian equation. Topological Methods in Nonlinear Analysis. Online. 2 December 2021. Vol. 58, no. 2, pp. 353 - 366. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2021.022.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Mingzheng Sun, Jiabao Su, Leiga Zhao

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop