Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On global invertibility of semi-algebraic local diffeomorphisms
  • Home
  • /
  • On global invertibility of semi-algebraic local diffeomorphisms
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

On global invertibility of semi-algebraic local diffeomorphisms

Authors

  • Francisco Braun https://orcid.org/0000-0003-3594-9809
  • Luis Renato Gonçalves Dias https://orcid.org/0000-0003-1054-870X
  • Jean Venato Santos https://orcid.org/0000-0001-8950-8641

DOI:

https://doi.org/10.12775/TMNA.2021.004

Keywords

Jacobian conjecture, global injectivity, locally trivial fibrations, regularity conditions at infinity

Abstract

In this partly expository paper we discuss conditions for the global injectivity of $C^2$ semi-algebraic local diffeomorphisms $f\colon \mathbb{R}^n \to \mathbb{R}^n$. In case $n> 2$, we consider the foliations of $\mathbb{R}^n$ defined by the level sets of each $n-2$ projections of $f$, i.e.\ the maps $\mathbb{R}^n \to \mathbb{R}^{n-2}$ obtained by deleting two coordinate functions of $f$. It is known that if the set of non-proper points of $f$ has codimension greater than or equal to $2$ and the leaves of the above-defined foliations are simply connected, then $f$ is bijective. In this work we relate this simply connectedness with the notion of locally trivial fibrations. Then some computable regularity conditions at infinity ensuring such simply connectedness are presented. Further, we provide an equivalent statement of the Jacobian conjecture by using fibrations. By means of examples we prove that the results presented here are different from a previous result based on a spectral hypothesis. Our considerations are also applied to discuss the behaviour of some conditions when $f$ is composed with linear isomorphisms: this is relevant due to some misunderstandings appearing in the literature.

References

E.C. Balreira, Incompressibility and global inversion, Topol. Methods Nonlinear Anal. 35 (2010), 69–76.

H. Bass, E. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287–330.

F. Braun, L.R.G. Dias and J. Venato-Santos, On topological approaches to the Jacobian conjecture in Cn , Proc. Edinb. Math. Soc. 63 (2020), 666–675.

M. Cobo, C. Gutierrez and J. Llibre, On the injectivity of C 1 maps of the real plane, Canad. J. Math. 54 (2002), 1187–1201.

M. Coste and M.J. de la Puente, Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion, J. Pure Appl. Algebra 162 (2001), 23–35.

S. Cynk and K. Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math. 56 (1991), 29–35.

G. de Marco, Fibrations of real valued functions, Nonlinear Anal. 28 (1997), 1689–1695.

L.R.G. Dias, M.A.S. Ruas and M. Tibăr, Regularity at infinity of real mappings and a Morse–Sard theorem, J. Topol. 5 (2012), 323–340.

A. Fernandes, C. Gutierrez and R. Rabanal, Global asymptotic stability for differentiable vector fields of R2 , J. Differential Equations 206 (2004), 470–482.

A. Fernandes, C. Maquera and J. Venato-Santos, Jacobian conjecture and semialgebraic maps, Math. Proc. Cambridge Philos. Soc. 157 (2014), 221–229.

T. Gaffney, Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compos. Math. 119 (1999), 157–167.

C. Gutierrez, A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 627–671.

C. Gutierrez, X. Jarque, J. Llibre and M.A. Teixeira, Global injectivity of C 1 maps of the real plane, inseparable leaves and the Palais-Smale condition, Canad. Math. Bull. 50 (2007), 377–389.

C. Gutierrez and C. Maquera, Foliations and polynomial diffeomorphisms of R3 , Math. Z. 262 (2009), 613–626.

Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259–266.

Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1–35.

Z. Jelonek, Geometry of real polynomial mappings, Math. Z. 239 (2002), 321–333.

Z. Jelonek, On asymptotic critical values and the Rabier theorem, Geometric Singularity Theory, vol. 65, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2004, pp. 125–133.

C. Joiţa and M. Tibăr, Bifurcation set of multi-parameter families of complex curves, J. Topol. 11 (2018), 739–751.

C. Joiţa and M. Tibăr, Bifurcation values of families of real curves, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 1233–1242.

O.-H. Keller, Ganze Cremona-transformationen, Monatsh. Math. Phys. 47 (1939), 299–306.

T. Krasiński and S. Spodzieja, On linear differential operators related to the ndimensional Jacobian conjecture, Real Algebraic Geometry, Lect. Notes Math., vol. 1524, Springer–Verlag, 1992, pp. 308–315.

K. Kurdyka, P. Orro and S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Differential Geom. 56 (2000), 67–92.

C. Maquera and J. Venato-Santos, Foliations and global injectivity in Rn , Bull. Braz. Math. Soc. 44 (2013), 273–284.

S. Nollet and F. Xavier, Global inversion via the Palais–Smale condition, Discrete Contin. Dyn. Syst. 8 (2002), 17–28.

T. Parthasarathy, On Global Univalence Theorems, Lect. Notes Math., vol. 977. Springer–Verlag, Berlin, New York, 1983, viii+106 pp.

A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compos. Math. 97 (1995), 369–384.

L. Păunescu and A. Zaharia, On the Lojasiewicz exponent at infinity for polynomial functions, Kodai Math. J. 20 (1997), 269–274.

S. Pinchuck, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994), 1–4.

P.J. Rabier, Ehresmann fibrations and Palais–Smale conditions for morphisms of Finsler manifolds, Ann. of Math. 146 (1997), 647–691.

M. Sabatini, An extension to Hadamard global inverse function theorem in the plane, Nonlinear Anal. 20 (1993), 1069–1077.

D. Siersma and M. Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. J. 80 (1995), 771–783.

N. Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N.J., 1951, viii+224 pp.

M. Tibăr and A. Zaharia, Asymptotic behaviour of families of real curves, Manuscripta Math. 99 (1999), 383–393.

L.D. Tráng and C. Weber, A geometrical approach to the Jacobian conjecture for n = 2, Kodai Math. J. 17 (1994), 374–381.

A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, 190. Birkhäuser Verlag, Basel, 2000, xviii+329 pp.

H.H. Vui and L.D. Tráng, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21–32.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-02

How to Cite

1.
BRAUN, Francisco, DIAS, Luis Renato Gonçalves and SANTOS, Jean Venato. On global invertibility of semi-algebraic local diffeomorphisms. Topological Methods in Nonlinear Analysis. Online. 2 December 2021. Vol. 58, no. 2, pp. 713 - 730. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.004.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Francisco Braun, Luis Renato Gonçalves Dias, Jean Venato Santos

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop