Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Separating solutions of nonlinear problems using nonlinear generalized Rayleigh quotients
  • Home
  • /
  • Separating solutions of nonlinear problems using nonlinear generalized Rayleigh quotients
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

Separating solutions of nonlinear problems using nonlinear generalized Rayleigh quotients

Authors

  • Marcos Leandro Carvalho https://orcid.org/0000-0002-4421-6079
  • Yavdat Il'yasov https://orcid.org/0000-0002-6310-9164
  • Carlos Alberto Santos https://orcid.org/0000-0001-6157-5201

DOI:

https://doi.org/10.12775/TMNA.2020.075

Keywords

Nonlinear generalized Rayleigh quotient, multiplicity result, Nehari manifold, ground state solution

Abstract

This paper deals with nonlinear elliptic boundary value problems with complicated geometry of nonlinearities. A new method for obtaining multiple solutions based on a recursive use of the nonlinear generalized Rayleigh quotients to the split Nehari manifold into subsets without degeneracies is introduced. The method is applied to prove the multiplicity result for nonnegative solutions, as well as to find a ground state of elliptic boundary value problems with nonlinearities of polynomial type.

References

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519–543.

V.I. Arnol’d, Catastrophe Theory, Springer Science & Business Media, 2003.

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), no. 1, 1–32.

V. Bobkov, P. Drábek and Y. Il’yasov, On partially free boundary solutions for elliptic problems with non-Lipschitz nonlinearities, Appl. Math. Lett. 95 (2019), 23–28.

L. Cherfils and Y. Il’yasov, On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9–22.

C. Cortázar, M. Elgueta and P. Felmer, On a semi-linear elliptic problem in RN with a non-Lipschitzian non-linearity, Adv. Difference Equ. 1 (1996), 199–218.

J.I. Dı́az, J. Hernández and Y. Sh. Il’yasov, On the exact multiplicity of stable ground states of non-Lipschitz semilinear elliptic equations for some classes of starshaped sets, Adv. Nonlinear Anal. 9 (2019), no. 1, 1046–1065.

J. Dı́az, J. Hernández and Y. Il’yasov, Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3, Chinese Ann. Math. Ser. B 38 (2017), no. 1, 345–378.

Y. Il’yasov, On nonlocal existence results for elliptic equations with convex-concave nonlinearities, Nonlinear Anal. 61 (2005), no. 1–2, 211–236.

Y. Il’yasov, On extreme values of Nehari manifold method via nonlinear Rayleigh’s quotient, Topol. Methods Nonlinear Anal. 49 (2017), no. 2, 683–714.

Y. Il’yasov and Y. Egorov, Hopf boundary maximum principle violation for semilinear elliptic equations, Nonlinear Anal. 72 (2010), no. 7–8, 3346–3355.

H. Kaper and M. Kwong, Free boundary problems for Emden–Fowler equation, Differential Integral Equations 3 (1990), 353–362.

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259–287.

N.S. Papageorgiou, V.D. Rădulescu and D. Repovš, Nonlinear Analysis Theory and Methods, Springer International Publishing, 2019.

S.I. Pokhozhaev, On the method of fibering a solution in nonlinear boundary value problems, Proc. Steklov Inst. Math. 192 (1992), 157–173.

L.E. Payne and D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 , no. 3–4, 273–303.

M. Struwe, Variational Methods, vol. 31999, Springer, Berlin, Heildelberg, 1990.

A. Szulkin and T. Weth, The Method of Nehari Manifold, Handbook of Nonconvex Analysis and Applications 597632 (2010).

M. Willem, Minimax Theorems, vol. 24, Springer Science & Business Media, 1997.

E. Zeidler, Nonlinear Functional Analysis and its Applications: III. Variational Methods and Optimization, Springer Science & Business Media, 2013.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-02

How to Cite

1.
CARVALHO, Marcos Leandro, IL’YASOV, Yavdat and SANTOS, Carlos Alberto. Separating solutions of nonlinear problems using nonlinear generalized Rayleigh quotients. Topological Methods in Nonlinear Analysis. Online. 2 December 2021. Vol. 58, no. 2, pp. 453 - 480. [Accessed 16 December 2025]. DOI 10.12775/TMNA.2020.075.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Marcos Leandro Carvalho, Yavdat Il'yasov, Carlos Alberto Santos

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop