Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions of superlinear and sublinear state-dependent discontinuous differential equations
  • Home
  • /
  • Periodic solutions of superlinear and sublinear state-dependent discontinuous differential equations
  1. Home /
  2. Archives /
  3. Vol 58, No 1 (September 2021) /
  4. Articles

Periodic solutions of superlinear and sublinear state-dependent discontinuous differential equations

Authors

  • Juan J. Nieto https://orcid.org/0000-0001-8202-6578
  • José M. Uzal

DOI:

https://doi.org/10.12775/TMNA.2021.016

Keywords

Differential equation with impulses, periodic solutions, twist fixed point theorem

Abstract

A classical, second-order differential equation is considered with state-dependent impulses at both the position and its derivative. This means that the instants of impulsive effects depend on the solutions and they are not fixed beforehand, making the study of this problem more difficult and interesting from the real applications point of view. The existence of periodic solutions follows from a transformation of the problem into a planar system followed by a study of the Poincaré map and the use of some fixed point theorems in the plane. Some examples are presented to illustrate the main results.

References

D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, CRC Press, 1993.

I. Bajo and E. Liz, Periodic boundary value problem for first order differential equations with impulses at variable times, J. Math. Anal. Appl. 204 (1996), 65–73.

J.-M. Belley and M. Virgilio, Periodic Liénard-type delay equations with statedependent impulses, Nonlinear Anal. 64 (2006), 568–589.

M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation New York, 2006.

Z. Cheng and J. Ren, Harmonic and subharmonic solutions for superlinear damped Duffing equation, Nonlinear Anal. Real World Appl. 14 (2013), 1155–1170.

B. Dai and L. Bao, Positive periodic solutions generated by impulses for the delay Nicholson’s blowflies model, Electron. J. Qual. Theory Differ. Equ. 4 (2016), 1–11.

W. Dambrosio, Time-map techniques for some boundary value problems, Rocky Mountain J. Math. 28 (1998), 885–926.

T. Ding, Approaches to the Qualitative Theory of Ordinary Differential Equations, World Scientific Publishing, 2007.

T.R. Ding and F. Zanolin, Periodic solutions of Duffing’s equations with superquadratic potential, J. Differential Equations 97 (1992), 328–378.

A. Fonda and P. Gidoni, An avoiding cones condition for the Poincaré–Birkhoff theorem, J. Differential Equations 262 (2017), 1064–1084.

M. Frigon and D. O’Regan, First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730–739.

D.C. Hill and D.S. Shafer, Asymptotics and stability of the delayed Duffing equation, J. Differential Equations 265 (2018), 33–68.

V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, 1989.

Z. Liang, Periodic and subharmonic solutions with winding number for p-laplacian equations by the Poincaré–Birkhoff theorem, J. Fixed Point Theory Appl. 19 (2017), 1283–1294.

A. Lomtatidze and J. Šremr, On periodic solutions to second-order Duffing type equations, Nonlinear Anal. Real World Appl. 40 (2018), 215–242.

J.J. Nieto and D. O’Regan, Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl. 10 (2009), 680–690.

J.J. Nieto and J.M. Uzal, Pulse positive periodic solutions for some classes of singular nonlinearities, Appl. Math. Lett. 86 (2018), 134–140.

Y. Niu and X. Li, Periodic solutions of semilinear Duffing equations with impulsive effects, J. Math. Anal. Appl. 467 (2018), 349–370.

D. Qian, L. Chen and X. Sun, Periodic solutions of superlinear impulsive differential equations: a geometric approach, J. Differential Equations 258 (2015), 3088–3106.

I. Rachůnková and J. Tomeček, State-Dependent Impulses: Boundary Value Problems on Compact Interval, Springer, 2015.

I. Rachůnková and J. Tomeček, A new approach to BVPs with state-dependent impulses, Bound. Value Probl. 2013 (2013), no. 22, pp. 13.

A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific Publishing, 1995.

I. Stamova and G. Stamov, Applied Impulsive Mathematical Models, Springer, 2016.

J. Sun, J. Chu and H. Chen, Periodic solution generated by impulses for singular differential equations, J. Math. Anal. Appl. 404 (2013), 562–569.

J. Tomeček, I. Rachůnková, J. Burkotová and J. Stryja, Coexistence of bouncing and classical periodic solutions of generalized Lazer–Solimini equation, Nonlinear Anal. 196 (2020), p. 111783.

S.T. Zavalishchin and A.N. Sesekin, Dynamic Impulse Systems, Kluwer Academic Publishers Group, 1997.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-09-12

How to Cite

1.
NIETO, Juan J. and UZAL, José M. Periodic solutions of superlinear and sublinear state-dependent discontinuous differential equations. Topological Methods in Nonlinear Analysis. Online. 12 September 2021. Vol. 58, no. 1, pp. 79 - 96. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2021.016.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 1 (September 2021)

Section

Articles

License

Copyright (c) 2021 Topological Methods in Nonlinear Analysis

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop