Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Transversality conditions for the existence of solutions of first-order discontinuous functional differential equations
  • Home
  • /
  • Transversality conditions for the existence of solutions of first-order discontinuous functional differential equations
  1. Home /
  2. Archives /
  3. Vol 58, No 1 (September 2021) /
  4. Articles

Transversality conditions for the existence of solutions of first-order discontinuous functional differential equations

Authors

  • Rodrigo López Pouso https://orcid.org/0000-0001-6491-933X
  • Ignacio Márquez Albés https://orcid.org/0000-0002-0754-9544
  • Jorge Rodríguez-López https://orcid.org/0000-0002-8453-4397

DOI:

https://doi.org/10.12775/TMNA.2021.001

Keywords

Discontinuous differential equation, functional differential equation, monotone iterative method

Abstract

We are concerned with the existence of extremal solutions to a large class of first-order functional differential problems under weak regularity assumptions. Our technique involves multivalued analysis and the method of lower and upper solutions in order to obtain a new existence result to a scalar Cauchy problem. As a consequence of this result and a monotone iterative method for discontinuous operators, we derive our main existence result which is illustrated by several examples concerning well-known models: a generalized logistic equation or second-order problems in the presence of dry friction.

References

J. Andres and L. Jüttner, Periodic solutions of discontinuous differential systems, Nonlinear Anal. Forum 6 (2001), no. 2, 391–407.

V.I. Bogachev, Measure Theory, Vol. I, Springer, 2007.

D. Bothe, Periodic solutions of non-smooth friction oscillators, Z. Angew. Math. Phys. 50 (1999), no. 5, 779–808.

A. Bressan and W. Shen, On discontinuous differential equations, Differential Inclusions and Optimal Control (J. Andres, L. Górniewicz and P. Nistri, eds.), Julius Schauder Center, Lect. Notes Nonlinear Anal. 2 (1998), 73–87.

A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl. 2011 (2011), 893753.

A. Cabada, M. Grossinho and F. Minhós, On the solvability of some discontinuous third order nonlinear differential equations with two point boundary conditions, J. Math. Anal. Appl. 285 (2003), no. 1, 174–190.

J.Á. Cid, On extending existence theory from scalar ordinary differential equations to infinite quasimonotone systems of functional equations, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2661–2670.

J.Á. Cid and R. López Pouso, Ordinary differential equations and systems with timedependent discontinuity sets, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 4, 617–637.

C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, vol. 205, Elsevier, 2006.

R. Figueroa and R. López Pouso, Discontinuous first-order functional boundary value problems, Nonlinear Anal. 69 (2008), 2142–2149.

R. Figueroa, R. López Pouso and J. Rodrı́guez-López, Extremal solutions for secondorder fully discontinuous problems with nonlinear functional boundary conditions, Electron. J. Qual. Theory Differ. Equ. 29 (2018), 1–14.

D. Franco and R. López Pouso, Nonresonance conditions and extremal solutions for first–order impulsive problems under weak assumptions, ANZIAM J. 44 (2003), 393–407.

L. Górniewicz, Topological fixed point theory of multivalued mappings, Springer, 2 Ed. (2006).

S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York, 1994.

S. Hu, Differential equations with discontinuous right-hand sides, J. Math. Anal. Appl. 154 (1991), 377–390.

R. López Pouso and J. Rodrı́guez-López, Existence and uniqueness of solutions for systems of discontinuous differential equations under localized Bressan–Shen transversality conditions, J. Math. Anal. Appl. 492 (2020), 124425, 16 pp.

R. López Pouso and J. Tomeček, First- and second-order discontinuous functional differential equations with impulses at fixed moments, Nonlinear Anal. 67 (2007), 455–467.

R. Ma, Existence of periodic solutions of a generalized friction oscillator, Nonlinear Anal. 11 (2010), 3316–3322.

R. Precup and J. Rodrı́guez-López, Positive solutions for discontinuous problems with applications to φ-Laplacian equations, J. Fixed Point Theory Appl. 20 (2018), no. 156, 1–17.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-09-12

How to Cite

1.
POUSO, Rodrigo López, ALBÉS, Ignacio Márquez and RODRÍGUEZ-LÓPEZ, Jorge. Transversality conditions for the existence of solutions of first-order discontinuous functional differential equations. Topological Methods in Nonlinear Analysis. Online. 12 September 2021. Vol. 58, no. 1, pp. 1 - 17. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 1 (September 2021)

Section

Articles

License

Copyright (c) 2021 Topological Methods in Nonlinear Analysis

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop