Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological stability and shadowing of dynamical systems from measure theoretical viewpoint
  • Home
  • /
  • Topological stability and shadowing of dynamical systems from measure theoretical viewpoint
  1. Home /
  2. Archives /
  3. Vol 58, No 1 (September 2021) /
  4. Articles

Topological stability and shadowing of dynamical systems from measure theoretical viewpoint

Authors

  • Jiandong Yin https://orcid.org/0000-0002-3216-4558
  • Meihua Dong

DOI:

https://doi.org/10.12775/TMNA.2020.071

Keywords

Topological stability, topologically stable measure, shadowing property

Abstract

In this paper it is proved that a topologically stable invariant measure has no sinks or sources in its support; an expansive homeomorphism is topologically stable if it exhibits a topologically stable nonatomic Borel support measure and a continuous map has the shadowing property if there exists an invariant measure with the shadowing property such that each almost periodic point is contained in the support of the invariant measure.

References

J. Auslander, Minimal Flows and There Extensions, North-Holland Mathematics, Studies, vol. 153, 1988.

J. Aubin and H. Frankowska, Set-Valued Analysis. Reprint of the 1990 edition, Modern Birkhauser Classics, Birkhauser Boston, Inc., Boston, MA, 2009.

N. Kawagichi, Quantitative shadowing points, Dyn. Syst. 32 (2017), 504–518.

K. Lee and C.A. Morales, Topological stability and pseudo-orbit tracing property for expansive measures, J. Differential Equations, 262 (2017), 3467–3487.

C.A. Morales, Shadowable points, Dyn. Syst. 31 (2016), 347–356.

G. Simmons, Introduction to Topology and Modern Analysis, Malabar, FL, Klrieger Pub., 2003.

W.R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769–774.

P. Walters, An Introduction to Ergodic Theory, Springer–Verlag, New York, 1982.

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, The structure of attractors in dynamical systems, Proc. Conf., North Dakota State Univ., Fargo, N.D., 1997, Lecture Notes in Math., vol. 668, Springer, Berlin, 1978, pp. 231–244.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-09-12

How to Cite

1.
YIN, Jiandong and DONG, Meihua. Topological stability and shadowing of dynamical systems from measure theoretical viewpoint. Topological Methods in Nonlinear Analysis. Online. 12 September 2021. Vol. 58, no. 1, pp. 307 - 321. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2020.071.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 1 (September 2021)

Section

Articles

License

Copyright (c) 2021 Topological Methods in Nonlinear Analysis

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop