Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Solutions to indefinite weakly coupled cooperative elliptic systems
  • Home
  • /
  • Solutions to indefinite weakly coupled cooperative elliptic systems
  1. Home /
  2. Archives /
  3. Vol 59, No 2A (June 2022) /
  4. Articles

Solutions to indefinite weakly coupled cooperative elliptic systems

Authors

  • Mónica Clapp https://orcid.org/0000-0002-3279-6491
  • Andrzej Szulkin https://orcid.org/0000-0001-8797-4657

DOI:

https://doi.org/10.12775/TMNA.2020.052

Keywords

Weakly coupled elliptic system, indefinite, cooperative, subcritical, critical, existence and multiplicity of solutions

Abstract

We study the elliptic system \begin{equation*} \begin{cases} -\Delta u_1 - \kappa_1u_1 = \mu_1|u_1|^{p-2}u_1 + \lambda\alpha|u_1|^{\alpha-2}|u_2|^\beta u_1, \\ -\Delta u_2 - \kappa_2u_2 = \mu_2|u_2|^{p-2}u_2 + \lambda\beta|u_1|^\alpha|u_2|^{\beta-2}u_2, \\ u_1,u_2\in D^{1,2}_0(\Omega), \end{cases} \end{equation*} where $\Omega$ is a bounded domain in $\mathbb R^N$, $N\geq 3$, $\kappa_1,\kappa_2\in\mathbb R$, $\mu_1,\mu_2,\lambda> 0$, $\alpha,\beta> 1$, and $\alpha + \beta = p\le 2^*:={2N}/({N-2})$. For $p\in (2,2^*)$ we establish the existence of a ground state and of a prescribed number of fully nontrivial solutions to this system for $\lambda$ sufficiently large. If $p=2^*$ and $\kappa_1,\kappa_2> 0$ we establish the existence of a ground state for $\lambda$ sufficiently large if, either $N\ge5$, or $N=4$ and neither $\kappa_1$ nor $\kappa_2$ are Dirichlet eigenvalues of $-\Delta$ in $\Omega$.

References

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. 7 (1983), no. 9, 981–1012.

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477.

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012), no. 2, 515–551.

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case, Calc. Var. Partial Differential Equations 52 (2015), no. 1–2, 423–467.

M. Clapp and J. Faya, Multiple solutions to a weakly coupled purely critical elliptic system in bounded domain, Discrete Contin. Dyn. Syst. 39 (2019), no. 6, 3265–3289.

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Diff. Equations 2 (1997), 555–572.

T.-C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in Rn, n ≤ 3, Comm. Math. Phys. 255 (2005), no. 3, 629–653.

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259–287.

S. Peng, Y. Peng, Z.-Q. Wang, On elliptic systems with Sobolev critical growth, Calc. Var. Partial Differential Equations 55 (2016), no. 6, Art. 142, 30 pp.

A. Pistoia and H. Tavares, Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions, J. Fixed Point Theory Appl. 19 (2017), no. 1, 407–446.

N. Soave and H. Tavares, New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms, J. Differential Equations 261 (2016), no. 1, 505–537.

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), no. 12, 3802–3822.

A. Szulkin, T. Weth and M. Willem, Ground state solutions for a semilinear problem with critical exponent, Differential Integral Equations 22 (2009), no. 9–10, 913–926.

M. Willem, Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-09-12

How to Cite

1.
CLAPP, Mónica and SZULKIN, Andrzej. Solutions to indefinite weakly coupled cooperative elliptic systems. Topological Methods in Nonlinear Analysis. Online. 12 September 2021. Vol. 59, no. 2A, pp. 553 - 568. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2020.052.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2A (June 2022)

Section

Articles

License

Copyright (c) 2021 Topological Methods in Nonlinear Analysis

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop