Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Asymptotic behavior of inexact orbits of nonexpansive mappings
  • Home
  • /
  • Asymptotic behavior of inexact orbits of nonexpansive mappings
  1. Home /
  2. Archives /
  3. Vol 59, No 2A (June 2022) /
  4. Articles

Asymptotic behavior of inexact orbits of nonexpansive mappings

Authors

  • Simeon Reich https://orcid.org/0000-0003-0780-1559
  • Alexander J. Zaslavski

DOI:

https://doi.org/10.12775/TMNA.2020.043

Keywords

Complete metric space, fixed point, inexact iteration, nonexpansive mapping

Abstract

We study the convergence of inexact iterates of nonexpansive mappings which take a nonempty closed subset of a complete metric space into the space in the case where the errors are sufficiently small.

References

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.

A. Betiuk-Pilarska and T. Domı́nguez Benavides, Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices, Pure Appl. Func. Anal. 1 (2016), 343–359.

R.E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloquium Math. 65 (1993), 169–179.

D. Butnariu, S. Reich and A.J. Zaslavski, Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces, Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama, 2006, pp. 11–32.

A. Cegielski, S. Reich and R. Zalas, Regular sequences of quasi-nonexpansive operators and their applications, SIAM J. Optim. 28 (2018), 1508–1532.

Y. Censor and M. Zaknoon, Algorithms and convergence results of projection methods for inconsistent feasibility problems: a review, Pure Appl. Func. Anal. 3 (2018), 565–586.

F.S. de Blasi, J. Myjak, S. Reich and A.J. Zaslavski, Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-Valued Var. Anal. 17 (2009), 97–112.

A. Gibali, A new split inverse problem and an application to least intensity feasible solutions, Pure Appl. Funct. Anal. 2 (2017), 243–258.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

K. Goebel and W.A. Kirk, Classical Theory of Nonexpansive Mappings, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 49–91.

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.

A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.

J. Jachymski, Extensions of the Dugundji–Granas and Nadler’s theorems on the continuity of fixed points, Pure Appl. Funct. Anal. 2 (2017), 657–666.

W.A. Kirk, Contraction mappings and extensions, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 1–34.

R. Kubota, W. Takahashi and Y. Takeuchi, Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications, Pure Appl. Func. Anal. 1 (2016), 63–84.

E. Pustylnyk, S. Reich and A.J. Zaslavski, Convergence to compact sets of inexact orbits of nonexpansive mappings in Banach and metric spaces, Fixed Point Theory Appl. 2008 (2008), 1–10.

S. Reich and A.J. Zaslavski, Well-posedness of fixed point problems, Far East J. Math. Sci., Special Volume (Functional Analysis and Its Applications), Part III (2001), 393–401.

S. Reich and A.J. Zaslavski, Generic aspects of metric fixed point theory, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 557–575.

S. Reich and A.J. Zaslavski, Convergence to attractors under perturbations, Commun. Math. Anal. 10 (2011), 57–63.

S. Reich and A.J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, vol. 34, Springer, New York, 2014.

S. Reich and A.J. Zaslavski, Convergence to attractors of nonexpansive set-valued mappings, Commun. Math. Anal. 22 (2019), 51–60.

W. Takahashi, The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces, Pure Appl. Funct. Anal. 2 (2017), 685–699.

W. Takahashi, A general iterative method for split common fixed point problems in Hilbert spaces and applications, Pure Appl. Funct. Anal. 3 (2018), 349–369.

A.J. Zaslavski, Approximate Solutions of Common Fixed Point Problems, Springer Optimization and Its Applications, Springer, Cham, 2016.

A.J. Zaslavski, Algorithms for Solving Common Fixed Point Problems, Springer Optimization and Its Applications, Springer, Cham, 2018.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-11-27

How to Cite

1.
REICH, Simeon and ZASLAVSKI, Alexander J. Asymptotic behavior of inexact orbits of nonexpansive mappings. Topological Methods in Nonlinear Analysis. Online. 27 November 2020. Vol. 59, no. 2A, pp. 525 - 535. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2020.043.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2A (June 2022)

Section

Articles

License

Copyright (c) 2020 Topological Methods in Nonlinear Analysis

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop