Heart muscle dysfunction during physical activity – biochemical response of muscle tissue
DOI:
https://doi.org/10.12775/QS.2020.022Keywords
In order to achieve the goal of completing a marathon run, athletes who make this effort are on the verge of their endurance. The marathon run is a serious challenge for many regulatory and homeostasis systems. During exercise, dehydration, hyperthermia aAbstract
In order to achieve the goal of completing a marathon run, athletes who make this effort are on the verge of their endurance. The marathon run is a serious challenge for many regulatory and homeostasis systems. During exercise, dehydration, hyperthermia and the synergistic effect of both stressors occur, reduce the stroke volume of the heart and thus blood flow to the muscles, skin and brain. Such intense effort releases markers of heart damage. Their presence is influenced by many factors.
The aim of this review is to summarize current knowledge regarding to effect of intensive physical activity on heart muscle functioning and biochemical response during this type of response. This type of revive could lead to better understanding of this process and propose protective methods during this type of response.
References
Zubin Maslov, P., Schulman, A., Lavie, C. J., & Narula, J. (2018). Personalized exercise dose prescription. European Heart Journal, 39(25), 2346-2355.
Lavie, C. J., Ozemek, C., Carbone, S., Katzmarzyk, P. T., & Blair, S. N. (2019). Sedentary behavior, exercise, and cardiovascular health. Circulation research, 124(5), 799-815.
American College of Sports Medicine, Thompson, P. D., Franklin, B. A., Balady, G. J., Blair, S. N., Corrado, D., ... & Link, M. S. (2007). Exercise and acute cardiovascular events: placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation, 115(17), 2358-2368.
Arem, H., Moore, S. C., Patel, A., Hartge, P., De Gonzalez, A. B., Visvanathan, K., ... & Linet, M. S. (2015). Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA internal medicine, 175(6), 959-967.
Dembińska-Kieć, A., Naskalski, J. W., & Solnica, B. (2017). Diagnostyka laboratoryjna z elementami biochemii klinicznej. Edra Urban & Partner.
Nelson, P. B., Ellis, D., Fu, F., Bloom, M. D., & O'Malley, J. (1989). Fluid and electrolyte balance during a cool weather marathon. The American Journal of Sports Medicine, 17(6), 770-772.
French, J. K., & White, H. D. (2004). Clinical implications of the new definition of myocardial infarction. Heart, 90(1), 99-106.
Brewster, L. M., Mairuhu, G., Sturk, A., & van Montfrans, G. A. (2007). Distribution of creatine kinase in the general population: implications for statin therapy. American heart journal, 154(4), 655-661.
Morandi, L., Angelini, C., Prelle, A., Pini, A., Grassi, B., Bernardi, G., ... & Citterio, A. (2006). High plasma creatine kinase: review of the literature and proposal for a diagnostic algorithm. Neurological Sciences, 27(5), 303-311.
Kierdaszuk, B., & Kamińska, A. (2012). Elevated plasma creatine kinase activity–does it always indicate muscle disease?. Neurologia i neurochirurgia polska, 46(3), 257-262.
Brewster, L. M., van Bree, S., Reijneveld, J. C., Notermans, N. C., Verschuren, W. M., Clark, J. F., ... & de Visser, M. (2008). Hypertension risk in idiopathic hyperCKemia. Journal of neurology, 255(1), 11-15.
Panteghini, M. (2002). The measurement of cardiac markers: where should we focus?. American journal of clinical pathology, 118(3), 354-361.
Rubio-Arias, J. Á., Ávila-Gandía, V., López-Román, F. J., Soto-Méndez, F., Alcaraz, P. E., & Ramos-Campo, D. J. (2019). Muscle damage and inflammation biomarkers after two ultra-endurance mountain races of different distances: 54 km vs 111 km. Physiology & behavior, 205, 51-57.
Fu, F., Nie, J., & Tong, T. K. (2009). Serum cardiac troponin T in adolescent runners: effects of exercise intensity and duration. International journal of sports medicine, 30(03), 168-172.
Frey, N., Müller-Bardorff, M., & Katus, H. A. (1998). Myocardial damage: the role of troponin T. In Myocardial Damage (pp. 27-39). Springer, Dordrecht.
Maynard, S. J., Menown, I. B. A., & Adgey, A. A. J. (2000). Troponin T or troponin I as cardiac markers in ischaemic heart disease.
Siegel, A. J., Silverman, L. M., & Holman, B. L. (1981). Elevated creatine kinase MB isoenzyme levels in marathon runners: normal myocardial scintigrams suggest noncardiac source. Jama, 246(18), 2049-2051.
Apple, F. S., Rogers, M. A., Sherman, W. M., & Ivy, J. L. (1984). Comparison of serum creatine kinase and creatine kinase MB activities post marathon race versus post myocardial infarction. Clinica chimica acta, 138(1), 111-118.
Kratz, A., & Lewandrowski, K. B. (1998). Normal reference laboratory values. New England Journal of Medicine, 339(15), 1063-1072.
Nache, C. M., Bar‐Eli, M., Perrin, C., & Laurencelle, L. (2005). Predicting dropout in male youth soccer using the theory of planned behavior. Scandinavian Journal of Medicine & Science in Sports, 15(3), 188-197.
Shave, R., Baggish, A., George, K., Wood, M., Scharhag, J., Whyte, G., ... & Thompson, P. D. (2010). Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. Journal of the American College of Cardiology, 56(3), 169-176.
Eijsvogels, T. M., Hoogerwerf, M. D., Maessen, M. F., Seeger, J. P., George, K. P., Hopman, M. T., & Thijssen, D. H. (2015). Predictors of cardiac troponin release after a marathon. Journal of science and medicine in sport, 18(1), 88-92.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 455
Number of citations: 0