Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Overview of Coenzyme Q10 and its role in enhancing sport performance
  • Home
  • /
  • Overview of Coenzyme Q10 and its role in enhancing sport performance
  1. Home /
  2. Archives /
  3. Vol. 51 (2026) /
  4. Medical Sciences

Overview of Coenzyme Q10 and its role in enhancing sport performance

Authors

  • Kacper Szada-Borzyszkowski Lower Silesian Center of Oncology, Pulmonology and Hematology https://orcid.org/0009-0006-4967-215X
  • Konstancja Owczarenko Lower Silesian Centre of Oncology, Pulmonology and Hematology https://orcid.org/0009-0009-2232-7753

DOI:

https://doi.org/10.12775/QS.2026.51.68932

Keywords

Coenzyme Q10, physical activity, sports, oxidative stress, supplementation, antioxidants

Abstract

Background

Among the many antioxidative substances tested as supplements in various sports, coenzyme Q10 appears to be one of the most promising in terms of improving physical endurance. As a part of mitochondrial respiratory chain, as well as a membrane antioxidant, its supplementation has a sound theoretical basis, as it may enhance energy production in muscles and protect them from oxidative stress, potentially leading to improved sports performance.

Aim

The aim of this study is to summarize the current knowledge regarding the impact of coenzyme Q10 supplementation on sport performance.

Materials and methods

A systematic literature review was conducted using PubMed and Google Scholar. The following search terms were used: “coenzyme Q10”, “exercise”, “sports”, and “mind sports”. Only English-language publications were analysed for possible inclusion in this review, with double-blind and single-blind, placebo-controlled studies being prioritised.

Conclusions

The studies included in this review showed contradictory results. Some demonstrated significant improvements in subjects’ physical fitness, while others showed no differences between the groups. Larger studies and meta-analyses on this topic should be conducted to more precisely evaluate the potential benefits of coenzyme Q10 supplementation.

References

[1] R. A. Bonakdar and E. Guarneri, “Coenzyme Q10.,” Am. Fam. Physician, vol. 72, no. 6, pp. 1065–70, Sep. 2005.

[2] A. E. Raizner, “Coenzyme Q10,” Methodist Debakey Cardiovasc. J., vol. 15, no. 3, pp. 185–191, 2019, doi: 10.14797/MDCJ-15-3-185.

[3] Z. Bian and L. Wei, “The role of coenzyme Q10 in exercise tolerance and muscle strength,” Arch. Physiol. Biochem., vol. 131, no. 6, pp. 887–906, 2025, doi: 10.1080/13813455.2025.2507746.

[4] M. Turunen, J. Olsson, and G. Dallner, “Metabolism and function of coenzyme Q,” Biochim. Biophys. Acta Biomembr., vol. 1660, no. 1–2, pp. 171–199, Jan. 2004, doi: 10.1016/j.bbamem.2003.11.012.

[5] M. Sarewicz and A. Osyczka, “Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling,” Physiol. Rev., vol. 95, no. 1, p. 219, Jan. 2015, doi: 10.1152/PHYSREV.00006.2014.

[6] P. R. Rich and D. S. Bendall, “A mechanism for the reduction of cytochromes by quinols in solution and its relevance to biological electron transfer reactions,” FEBS Lett., vol. 105, no. 2, pp. 189–194, Sep. 1979, doi: 10.1016/0014-5793(79)80608-0.

[7] S. Garcia-Vallve, “Contribution of each complex of the mitochondrial respiratory chain in the generation of the proton-motive force*,” Biochem. Mol. Biol. Educ., vol. 32, no. 1, pp. 17–19, Jan. 2004, doi: 10.1002/BMB.2004.494032010308.

[8] B. Halliwell, “The wanderings of a free radical,” Free Radic. Biol. Med., vol. 46, no. 5, pp. 531–542, Mar. 2009, doi: 10.1016/J.FREERADBIOMED.2008.11.008.

[9] I. Fridovich, “Oxygen: aspects of its toxicity and elements of defense,” Curr. Eye Res., vol. 3, no. 1, pp. 1–2, 1984, doi: 10.3109/02713688408997181.

[10] M. Arenas-Jal, J. M. Suñé-Negre, and E. García-Montoya, “Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges,” Compr. Rev. Food Sci. Food Saf., vol. 19, no. 2, pp. 574–594, Mar. 2020, doi: 10.1111/1541-4337.12539.

[11] M. Turunen, J. Olsson, and G. Dallner, “Metabolism and function of coenzyme Q,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1660, no. 1–2, pp. 171–199, Jan. 2004, doi: 10.1016/J.BBAMEM.2003.11.012.

[12] B. Frei, M. C. Kim, and B. N. Ames, “Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations.,” Proceedings of the National Academy of Sciences, vol. 87, no. 12, pp. 4879–4883, Jun. 1990, doi: 10.1073/PNAS.87.12.4879.

[13] D. R. Green and J. C. Reed, “Mitochondria and apoptosis,” Science, vol. 281, no. 5381, pp. 1309–1312, Aug. 1998, doi: 10.1126/SCIENCE.281.5381.1309.

[14] R. Pala et al., “Coenzyme Q10 Supplementation Modulates NFκB and Nrf2 Pathways in Exercise Training,” J. Sports Sci. Med., vol. 15, no. 1, p. 196, Feb. 2016, Accessed: Feb. 03, 2026. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC4763840/

[15] M. V. Miles, “The uptake and distribution of coenzyme Q10,” Mitochondrion, vol. 7 Suppl, no. SUPPL., Jun. 2007, doi: 10.1016/J.MITO.2007.02.012.

[16] Y. Zhang, F. Aberg, E. L. Appelkvist, G. Dallner, and L. Ernster, “Uptake of Dietary Coenzyme Q Supplement is Limited in Rats,” J. Nutr., vol. 125, no. 3, pp. 446–453, Mar. 1995, doi: 10.1093/JN/125.3.446.

[17] S. Xia, S. Xu, and X. Zhang, “Optimization in the preparation of coenzyme Q10 nanoliposomes,” J. Agric. Food Chem., vol. 54, no. 17, pp. 6358–6366, Aug. 2006, doi: 10.1021/JF060405O.

[18] S. Horkovics-Kovats, “Efficiency of enterohepatic circulation, its determination and influence on drug bioavailability,” Arzneimittelforschung, vol. 49, no. 10, pp. 805–815, 1999, doi: 10.1055/S-0031-1300506.

[19] A. W. Linnane et al., “Cellular redox activity of coenzyme Q10: effect of CoQ10 supplementation on human skeletal muscle,” Free Radic. Res., vol. 36, no. 4, pp. 445–453, Apr. 2002, doi: 10.1080/10715760290021306.

[20] A. Sánchez-Cuesta et al., “High coenzyme Q10 plasma levels improve stress and damage markers in professional soccer players during competition,” Int. J. Vitam. Nutr. Res., vol. 92, no. 3–4, pp. 192–203, Jul. 2022, doi: 10.1024/0300-9831/A000659.

[21] A. Poulios et al., “The Effects of Antioxidant Supplementation on Soccer Performance and Recovery: A Critical Review of the Available Evidence,” Nutrients 2024, Vol. 16, vol. 16, no. 22, Nov. 2024, doi: 10.3390/NU16223803.

[22] Gharahdaghi, Nima & Shabkhiz, Fatemeh & Azarboo, Ehsan & Keyhanian, Abbas. (2013). The Effects of Daily Coenzyme Q10 Supplementation on VO2max , vVO2max and Intermittent Exercise Performance in Soccer Players. Life Science Journal. 10.

[23] M. R. Rahimi, A. B. Morton, H. Golpasandi, and S. H. Salih, “Short-term CoQ10 supplementation reduces markers of cardiac stress in soccer players following heavy exercise: A randomized double-blind placebo-controlled trial,” BMC Sports Sci. Med. Rehabil., Dec. 2025, doi: 10.1186/S13102-025-01456-0.

[24] M. D. Ferrer et al., “A soccer match’s ability to enhance lymphocyte capability to produce ROS and induce oxidative damage,” Int. J. Sport Nutr. Exerc. Metab., vol. 19, no. 3, pp. 243–258, 2009, doi: 10.1123/IJSNEM.19.3.243.

[25] P. Tauler et al., “Supplementation with an antioxidant cocktail containing coenzyme Q prevents plasma oxidative damage induced by soccer,” Eur. J. Appl. Physiol., vol. 104, no. 5, pp. 777–785, 2008, doi: 10.1007/S00421-008-0831-6.

[26] Y. Suzuki, S. Nagato, K. Sakuraba, K. Morio, and K. Sawaki, “Short-term ubiquinol-10 supplementation alleviates tissue damage in muscle and fatigue caused by strenuous exercise in male distance runners,” Int. J. Vitam. Nutr. Res., vol. 91, no. 3–4, pp. 261–270, Jun. 2021, doi: 10.1024/0300-9831/A000627.

[27] M. Armanfar, A. Jafari, G. R. Dehghan, and L. Abdizadeh, “Effect of coenzyme Q10 supplementation on exercise-induced response of inflammatory indicators and blood lactate in male runners,” Med. J. Islam. Repub. Iran, vol. 29, p. 202, 2015, Accessed: Feb. 07, 2026. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC4476212/

[28] J. Díaz-Castro et al., “Coenzyme Q(10) supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise,” Eur. J. Nutr., vol. 51, no. 7, pp. 791–799, Oct. 2012, doi: 10.1007/S00394-011-0257-5.

[29] A. Bonetti, F. Solito, G. Carmosino, A. M. Bargossi, and P. L. Fiorella, “Effect of ubidecarenone oral treatment on aerobic power in middle-aged trained subjects.,” J. Sports Med. Phys. Fitness, vol. 40, no. 1, pp. 51–7, Mar. 2000.

[30] B. Braun, P. M. Clarkson, P. S. Freedson, and R. L. Kohl, “Effects of coenzyme Q10 supplementation on exercise performance, VO2max, and lipid peroxidation in trained cyclists,” Int. J. Sport Nutr., vol. 1, no. 4, pp. 353–365, 1991, doi: 10.1123/IJSN.1.4.353.

[31] M. Svensson, C. Malm, M. Tonkonogi, B. Ekblom, B. Sjödin, and K. Sahlin, “Effect of Q10 supplementation on tissue Q10 levels and adenine nucleotide catabolism during high-intensity exercise,” Int. J. Sport Nutr., vol. 9, no. 2, pp. 166–180, 1999, doi: 10.1123/IJSN.9.2.166.

[32] C. Malm, M. Svensson, B. Ekblom, and B. Sjödin, “Effects of ubiquinone-10 supplementation and high intensity training on physical performance in humans,” Acta Physiol. Scand., vol. 161, no. 3, pp. 379–384, 1997, doi: 10.1046/J.1365-201X.1997.00198.X.

[33] S. B. Weston, S. Zhou, R. P. Weatherby, and S. J. Robson, “Does exogenous coenzyme Q10 affect aerobic capacity in endurance athletes?,” Int. J. Sport Nutr., vol. 7, no. 3, pp. 197–206, 1997, doi: 10.1123/IJSN.7.3.197.

[34] A. Nielsen et al., “No effect of antioxidant supplementation in triathletes on maximal oxygen uptake, 31P-NMRS detected muscle energy metabolism and muscle fatigue,” Int. J. Sports Med., vol. 20, no. 3, pp. 154–158, Mar. 1999, doi: 10.1055/S-2007-971110.

[35] A. Emami, A. Tofighi, S. Asri-Rezaei, and B. Bazargani-Gilani, “The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers,” Br. J. Nutr., vol. 119, no. 4, pp. 381–390, Feb. 2018, doi: 10.1017/S0007114517003774.

[36] A. Emami, A. Tofighi, S. Asri-Rezaei, and B. Bazargani-Gilani, “Effect of Short-term Coenzyme Q10 Supplementation and Precooling on Serum Endogenous Antioxidant Enzymes of Elite Swimmers,” J. Strength Cond. Res., vol. 32, no. 5, pp. 1431–1439, 2018, doi: 10.1519/JSC.0000000000001971.

[37] D. Leelarungrayub, N. Sawattikanon, J. Klaphajone, P. Pothongsunan, and R. J. Bloomer, “Coenzyme Q10 Supplementation Decreases Oxidative Stress and Improves Physical Performance in Young Swimmers: A Pilot Study,” The Open Sports Medicine Journal, vol. 4, no. 1, pp. 1–8, Feb. 2010, doi: 10.2174/1874387001004010001.

[38] D. Alf, M. E. Schmidt, and S. C. Siebrecht, “Ubiquinol supplementation enhances peak power production in trained athletes: a double-blind, placebo controlled study,” J. Int. Soc. Sports Nutr., vol. 10, p. 24, Apr. 2013, doi: 10.1186/1550-2783-10-24.

[39] S. Kunching, T. Nararatwanchai, T. Chalermchai, K. Wongsupasawat, P. Sitiprapaporn, and A. Thipsiriset, “The effects of ubiquinol supplementation on clinical parameters and physical performance of trained men,” Songklanakarin J. Sci. Technol, vol. 44, no. 1, pp. 231–235.

[40] C. C. Ho et al., “Ubiquinone Supplementation with 300 mg on Glycemic Control and Antioxidant Status in Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial,” Antioxidants, vol. 9, no. 9, p. 823, Sep. 2020, doi: 10.3390/ANTIOX9090823.

[41] A. Sarmiento et al., “Short-term ubiquinol supplementation reduces oxidative stress associated with strenuous exercise in healthy adults: A randomized trial,” Biofactors, vol. 42, no. 6, pp. 612–622, Nov. 2016, doi: 10.1002/BIOF.1297.

[42] P. Orlando et al., “Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes,” Redox Rep., vol. 23, no. 1, p. 136, Jan. 2018, doi: 10.1080/13510002.2018.1472924.

[43] H. Gökbel, I. Gül, M. Belviranli, and N. Okudan, “The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary men,” J. Strength Cond. Res., vol. 24, no. 1, pp. 97–102, Jan. 2010, doi: 10.1519/JSC.0B013E3181A61A50.

[44] N. Okudan, M. Belviranli, and S. Torlak, “Coenzyme Q10 does not prevent exercise-induced muscle damage and oxidative stress in sedentary men,” J. Sports Med. Phys. Fitness, vol. 58, no. 6, pp. 889–894, Jun. 2018, doi: 10.23736/S0022-4707.17.07146-8.

[45] D. A. Porter, D. L. Costill, J. J. Zachwieja, W. J. Fink, E. Wagner, and K. Folkers, “The effect of oral coenzyme Q10 on the exercise tolerance of middle-aged, untrained men,” Int. J. Sports Med., vol. 16, no. 7, pp. 421–427, 1995, doi: 10.1055/S-2007-973031.

[46] M. Cooke et al., “Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals,” J. Int. Soc. Sports Nutr., vol. 5, p. 8, Mar. 2008, doi: 10.1186/1550-2783-5-8.

[47] M. Kon et al., “Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10,” Br. J. Nutr., vol. 100, no. 4, pp. 903–909, 2008, doi: 10.1017/S0007114508926544.

[48] K. Kizaki et al., “Effect of reduced coenzyme Q10 (ubiquinol) supplementation on blood pressure and muscle damage during kendo training camp: a double-blind, randomized controlled study.,” J. Sports Med. Phys. Fitness, vol. 55, no. 7–8, pp. 797–804, 2015.

[49] T. Ylikoski, J. Piirainen, O. Hanninen, and J. Penttinen, “The effect of coenzyme Q10 on the exercise performance of cross-country skiers,” Mol. Aspects Med., vol. 18 Suppl, no. SUPPL., pp. 283–290, 1997, doi: 10.1016/S0098-2997(97)00038-1.

[50] H. Gokbel et al., “Effects of Coenzyme Q10 Supplementation on Exercise Performance and Markers of Oxidative Stress in Hemodialysis Patients: A Double-Blind Placebo-Controlled Crossover Trial,” Am. J. Ther., vol. 23, no. 6, pp. e1736–e1743, Nov. 2016, doi: 10.1097/MJT.0000000000000166.

[51] M. C. Nankivell, F. Rosenfeldt, A. Pipingas, M. P. Pase, J. M. Reddan, and C. Stough, “Coenzyme Q10 and Cognition: A Review,” Nutrients, vol. 17, no. 17, Sep. 2025, doi: 10.3390/NU17172896.

[52] A. Naini, V. J. Lewis, M. Hirano, and S. DiMauro, “Primary coenzyme Q10 deficiency and the brain,” Biofactors, vol. 18, no. 1–4, pp. 145–152, 2003, doi: 10.1002/BIOF.5520180217.

Quality in Sport

Downloads

  • PDF

Published

2026-02-19

How to Cite

1.
SZADA-BORZYSZKOWSKI, Kacper and OWCZARENKO, Konstancja. Overview of Coenzyme Q10 and its role in enhancing sport performance. Quality in Sport. Online. 19 February 2026. Vol. 51, p. 68932. [Accessed 21 February 2026]. DOI 10.12775/QS.2026.51.68932.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 51 (2026)

Section

Medical Sciences

License

Copyright (c) 2026 Kacper Szada-Borzyszkowski, Konstancja Owczarenko

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 13
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Coenzyme Q10, physical activity, sports, oxidative stress, supplementation, antioxidants
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop