The Impact of Blue Light Exposure on Cortisol Secretion and Psychophysiological Readiness in Sport
DOI:
https://doi.org/10.12775/QS.2026.52.68902Keywords
Blue light, Coritsol secretion, Short wavelength of light, Blue light stress, Cortisol level, Sleep rectriction, Circadian rhythm, Cortisol awakening response, Shift work, Performance in sport, Quality of work environmentAbstract
Introduction:
Cortisol is a crucial stress hormone regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Its secretion is intricately linked to the central biological clock and the suprachiasmatic nucleus in hypothalamus (Figueiro & Rea, 2010). Although the interaction between light exposure and cortisol secretion is indicated in numerous studies, the effect of specific light on the cortisol secretion during stress response is not yet fully understood (Petrowski et.al, 2021a). Blue light is characterized by a short wavelength and high-energy and is present of natural sun light, and artificial light. It is a key for regulating circadian rhythms.
Purpose of Work: This review is a comprehensive summary of mechanisms through which different light spectra affect cortisol secretion in several contexts, such as stress reaction, sleep-restriction, and seasonal changes, taking into consideration health implications.
Materials and methods: A comprehensive literature search was conducted in the Google Scholar and PubMed databases from 1998 onward. The review included controlled laboratory, longitudinal, clinical and field studies that investigated the impact of various types of light on cortisol secretion.
Summary: The evidence indicates a stimulatory effect of exposure to blue and bright light on cortisol secretion primarily targeting the cortisol rising phase (post-awakening) or night time, and strengthening cortisol stress reaction. In context of sleep limitation, daytime light exposure mitigates morning decline in cortisol. However, prolonged exposure to extremely bright white light suppresses cortisol secretion, but only when its level is already elevated. Furthermore, the review identifies light manipulation as a non-invasive tool for optimizing athletic performance. Blue light exposure stimulates the anticipatory cortisol response required for activation and
cognitive readiness, whereas red light facilitates recovery and reduces pre-competitive anxiety.
References
1. Figueiro, M. G., & Rea, M. S. (2010). The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. International journal of endocrinology, 2010, 829351. https://doi.org/10.1155/2010/829351
2. Petrowski, K., Buehrer, S., Niedling, M., & Schmalbach, B. (2021a). The effects of light exposure on the cortisol stress response in human males. Stress (Amsterdam, Netherlands), 24(1), 29–35. https://doi.org/10.1080/10253890.2020.1741543
3. Jung, C. M., Khalsa, S. B., Scheer, F. A., Cajochen, C., Lockley, S. W., Czeisler, C. A., & Wright, K. P., Jr (2010). Acute effects of bright light exposure on cortisol levels. Journal of biological rhythms, 25(3), 208–216. https://doi.org/10.1177/0748730410368413
4. Dickmeis T. (2009). Glucocorticoids and the circadian clock. The Journal of endocrinology, 200(1), 3–22. https://doi.org/10.1677/JOE-08-0415
5. St Hilaire, M. A., Ámundadóttir, M. L., Rahman, S. A., Rajaratnam, S. M. W., Rüger, M., Brainard, G. C., Czeisler, C. A., Andersen, M., Gooley, J. J., & Lockley, S. W. (2022). The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration. Proceedings of the National Academy of Sciences of the United States of America, 119(51), e2205301119. https://doi.org/10.1073/pnas.2205301119
6. Chang, A. M., Aeschbach, D., Duffy, J. F., & Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1232–1237. https://doi.org/10.1073/pnas.1418490112
7. Figueiro, M. G., & Rea, M. S. (2012). Short-wavelength light enhances cortisol awakening response in sleep-restricted adolescents. International journal of endocrinology, 2012, 301935. https://doi.org/10.1155/2012/301935
8. Petrowski, K., Bührer, S., Albus, C., & Schmalbach, B. (2021b). Increase in cortisol concentration due to standardized bright and blue light exposure on saliva cortisol in the morning following sleep laboratory. Stress (Amsterdam, Netherlands), 24(3), 331–337. https://doi.org/10.1080/10253890.2020.1803265
9. Faraut, B., Andrillon, T., Drogou, C., Gauriau, C., Dubois, A., Servonnet, A., Van Beers, P., Guillard, M., Gomez-Merino, D., Sauvet, F., Chennaoui, M., & Léger, D. (2020). Daytime Exposure to Blue-Enriched Light Counters the Effects of Sleep Restriction on Cortisol, Testosterone, Alpha-Amylase and Executive Processes. Frontiers in neuroscience, 13, 1366. https://doi.org/10.3389/fnins.2019.01366
10. McEwen B. S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 33–44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
11. Adamsson, M., Laike, T., & Morita, T. (2016). Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length. Journal of physiological anthropology, 36(1), 6. https://doi.org/10.1186/s40101-016-0103-9
12. Hurst, M. (2008). Qui dort la nuit de nos jours? Les habitudes de sommeil des Canadiens. Statistique Canada, 11(008), 42-49.
13. Léger, D., Roscoat, E.d, Bayon, V., Guignard, R., Pâquereau, J., & Beck, F. (2011). Short sleep in young adults: Insomnia or sleep debt? Prevalence and clinical description of short sleep in a representative sample of 1004 young adults from France. Sleep medicine, 12(5), 454–462. https://doi.org/10.1016/j.sleep.2010.12.012
14. Petrowski, K., Schmalbach, B., Niedling, M., & Stalder, T. (2019). The effects of post-awakening light exposure on the cortisol awakening response in healthy male individuals. Psychoneuroendocrinology, 108, 28–34. https://doi.org/10.1016/j.psyneuen.2019.05.016
15. Pascu, L. S., Perri, D., Bradeanu, A. V., Ciubara, A., Marin, M., & Virginia, M. (2019). The effects of blue light in modern society. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 10, 5-11., http://dx.doi.org/10.70594/brain/v10.s1/1
16. Komada, Y., Aoki, K., Gohshi, S. et al. Effects of television luminance and wavelength at habitual bedtime on melatonin and cortisol secretion in humans. Sleep Biol. Rhythms 13, 316–322 (2015). https://doi.org/10.1111/sbr.12121
17. Mekschrat, L., Schmalbach, B., Rohleder, N., & Petrowski, K. (2024). IL-6 after wake-up in human males: Exposure to red versus blue light and the interplay with cortisol. Brain, behavior, & immunity - health, 40, 100833. https://doi.org/10.1016/j.bbih.2024.100833
18. Del Giudice, M., & Gangestad, S. W. (2018). Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain, behavior, and immunity, 70, 61–75. https://doi.org/10.1016/j.bbi.2018.02.013
19. Cain, D. W., & Cidlowski, J. A. (2017). Immune regulation by glucocorticoids. Nature reviews. Immunology, 17(4), 233–247. https://doi.org/10.1038/nri.2017.1
20. Koutentaki, E., Basta, M., Antypa, D., Zaganas, I., Panagiotakis, S., Simos, P., & Vgontzas, A. N. (2023). IL-6 Enhances the Negative Impact of Cortisol on Cognition among Community-Dwelling Older People without Dementia. Healthcare (Basel, Switzerland), 11(7), 951. https://doi.org/10.3390/healthcare11070951
21. Sudheimer, K. D., O'Hara, R., Spiegel, D., Powers, B., Kraemer, H. C., Neri, E., Weiner, M., Hardan, A., Hallmayer, J., & Dhabhar, F. S. (2014). Cortisol, cytokines, and hippocampal volume interactions in the elderly. Frontiers in aging neuroscience, 6, 153. https://doi.org/10.3389/fnagi.2014.00153
22. Lara, V. P., Caramelli, P., Teixeira, A. L., Barbosa, M. T., Carmona, K. C., Carvalho, M. G., Fernandes, A. P., & Gomes, K. B. (2013). High cortisol levels are associated with cognitive impairment no-dementia (CIND) and dementia. Clinica chimica acta; international journal of clinical chemistry, 423, 18–22. https://doi.org/10.1016/j.cca.2013.04.013
23. van Paridon, K. N., Timmis, M. A., Nevison, C. M., & Bristow, M. (2017). The anticipatory stress response to sport competition; a systematic review with meta-analysis of cortisol reactivity. BMJ open sport & exercise medicine, 3(1), e000261. https://doi.org/10.1136/bmjsem-2017-000261
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Michał Popczyk, Martyna Świątecka, Agnieszka Przybyłowska, Sylwia Bryksy, Ewa Buczkowska, Jakub Kaźmierczyk, Hanna Tymchenko, Agnieszka Piechowicz, Natalia Popczyk, Aleksandra Marciszewska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 52
Number of citations: 0