Machine learning capabilities in headache diagnosis
DOI:
https://doi.org/10.12775/QS.2026.51.68616Keywords
primary headache, secondary headache, machine learning, artificial intelligence, functional magnetic resonance imaging, migraine, migraine classification, headache classificationAbstract
Introduction: Headaches can be divided into primary and secondary types. Primary headaches include migraine, tension-type headache, and cluster headache - trigeminal- autonomic cephalalgia. Secondary headaches are symptoms of other illnesses, often life- threatening, such as cerebrovascular diseases. In diagnosis, artificial intelligence (AI) is increasingly helpful to physicians, as it can independently recognize and even classify headaches using machine learning.
Research objective: Review of scientific literature and summary of current machine learning capabilities in headache diagnosis
Materials and Methods: A literature review was conducted using PubMed and Google Scholar databases. The following keywords were used: "Machine learning headache", "Machine learning headache diagnosis", "Artificial intelligence and headache". Selected articles are in the time frame of 2020-2025.
Results: Machine learning (ML) is most often used in classifying headaches using a patient's medical records or imaging tests with an accuracy of up to 90%. Based on functional magnetic resonance imaging (fMRI), it is possible to identify primary headaches and classify them. Additionally, thanks to AI, people who do not specialize in headaches can more easily diagnose and treat patients suffering from this disease. AI also enables predicting the occurrence of a headache and distinguishing between primary and secondary headaches.
Conclusions: The development of machine learning in the field of headache diagnosis requires additional research, gathering more data, and verifying it in clinical practice.
References
1. Li ML, Zhang F, Chen YY, Luo HY, Quan ZW, Wang YF, Huang LT, Wang JH. A state- of-the-art review of functional magnetic resonance imaging technique integrated with advanced statistical modeling and machine learning for primary headache diagnosis. Front Hum Neurosci. 2023 Sep 1;17:1256415. doi: 10.3389/fnhum.2023.1256415. PMID: 37746052; PMCID: PMC10513061.
2. Dumkrieger G, Chong CD, Ross K, Berisha V, Schwedt TJ. The value of brain MRI functional connectivity data in a machine learning classifier for distinguishing migraine from persistent post-traumatic headache. Front Pain Res (Lausanne). 2023 Jan 9;3:1012831. doi: 10.3389/fpain.2022.1012831. PMID: 36700144; PMCID: PMC9869115.
3. Stubberud A, Langseth H, Nachev P, Matharu MS, Tronvik E. Artificial intelligence and headache. Cephalalgia. 2024 Aug;44(8):3331024241268290. doi: 10.1177/03331024241268290. PMID: 39099427.
4. Khan L, Shahreen M, Qazi A, Jamil Ahmed Shah S, Hussain S, Chang HT. Migraine headache (MH) classification using machine learning methods with data augmentation. Sci Rep. 2024 Mar 2;14(1):5180. doi: 10.1038/s41598-024-55874-0. PMID: 38431729; PMCID: PMC10908834.
5. Katsuki M, Shimazu T, Kikui S, Danno D, Miyahara J, Takeshima R, Takeshima E, Shimazu Y, Nakashima T, Matsuo M, Takeshima T. Developing an artificial intelligence- based headache diagnostic model and its utility for non-specialists' diagnostic accuracy. Cephalalgia. 2023 May;43(5):3331024231156925. doi: 10.1177/03331024231156925. PMID: 37072919.
6. Okada M, Katsuki M, Shimazu T, Takeshima T, Mitsufuji T, Ito Y, Ohbayashi K, Imai N, Miyahara J, Matsumori Y, Nakazato Y, Fujita K, Hoshino E, Yamamoto T. Preliminary External Validation Results of the Artificial Intelligence-Based Headache Diagnostic Model: A Multicenter Prospective Observational Study. Life (Basel). 2024 Jun 11;14(6):744. doi: 10.3390/life14060744. PMID: 38929727; PMCID: PMC11204521.
7. Hsiao FJ, Chen WT, Wang YF, Chen SP, Lai KL, Coppola G, Wang SJ. Identification of patients with chronic migraine by using sensory-evoked oscillations from the electroencephalogram classifier. Cephalalgia. 2023 May;43(5):3331024231176074. doi: 10.1177/03331024231176074. PMID: 37194198.
8. Yang F, Meng T, Torben-Nielsen B, Magnus C, Liu C, Dejean E. A machine learning approach to support triaging of primary versus secondary headache patients using complete blood count. PLoS One. 2023 Mar 6;18(3):e0282237. doi: 10.1371/journal.pone.0282237. PMID: 36877693; PMCID: PMC9987784.
9. Katsuki M, Tatsumoto M, Kimoto K, Iiyama T, Tajima M, Munakata T, Miyamoto T, Shimazu T. Investigating the effects of weather on headache occurrence using a smartphone application and artificial intelligence: A retrospective observational cross- sectional study. Headache. 2023 May;63(5):585-600. doi: 10.1111/head.14482. Epub 2023 Feb 28. PMID: 36853848.
10. Stubberud A, Ingvaldsen SH, Brenner E, Winnberg I, Olsen A, Gravdahl GB, Matharu MS, Nachev P, Tronvik E. Forecasting migraine with machine learning based on mobile phone diary and wearable data. Cephalalgia. 2023 May;43(5):3331024231169244. doi: 10.1177/03331024231169244. PMID: 37096352.
11. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72. doi: 10.1073/pnas.87.24.9868. PMID: 2124706; PMCID: PMC55275.
12. Sun H, He Y, Cao H. Functional magnetic resonance imaging research in China. CNS Neurosci Ther. 2021 Nov;27(11):1259-1267. doi: 10.1111/cns.13725. Epub 2021 Sep 7. PMID: 34492160; PMCID: PMC8504522.
13. Schulte LH, Mehnert J, May A. Longitudinal Neuroimaging over 30 Days: Temporal Characteristics of Migraine. Ann Neurol. 2020 Apr;87(4):646-651. doi: 10.1002/ana.25697. Epub 2020 Feb 18. PMID: 32031707.
14. Yang H, Zhang J, Liu Q, Wang Y. Multimodal MRI-based classification of migraine: using deep learning convolutional neural network. Biomed Eng Online. 2018 Oct 11;17(1):138. doi: 10.1186/s12938-018-0587-0. PMID: 30314437; PMCID: PMC6186044.
15. Jorge-Hernandez F, Garcia Chimeno Y, Garcia-Zapirain B, Cabrera Zubizarreta A, Gomez Beldarrain MA, Fernandez-Ruanova B. Graph theory for feature extraction and classification: a migraine pathology case study. Biomed Mater Eng. 2014;24(6):2979-86. doi: 10.3233/BME-141118. PMID: 25227005.
16. Wang Y, Wang Y, Bu L, Wang S, Xie X, Lin F, Xiao Z. Functional Connectivity Features of Resting-State Functional Magnetic Resonance Imaging May Distinguish Migraine From Tension-Type Headache. Front Neurosci. 2022 Apr 26;16:851111. doi: 10.3389/fnins.2022.851111. PMID: 35557602; PMCID: PMC9087040.
17. Messina R, Sudre CH, Wei DY, Filippi M, Ourselin S, Goadsby PJ. Biomarkers of Migraine and Cluster Headache: Differences and Similarities. Ann Neurol. 2023 Apr;93(4):729-742. doi: 10.1002/ana.26583. Epub 2023 Jan 4. PMID: 36565271.
18. Erickson JC. Treatment outcomes of chronic post-traumatic headaches after mild head trauma in US soldiers: an observational study. Headache. 2011 Jun;51(6):932-44. doi: 10.1111/j.1526-4610.2011.01909.x. Epub 2011 May 17. PMID: 21592097.
19. Theeler B, Lucas S, Riechers RG 2nd, Ruff RL. Post-traumatic headaches in civilians and military personnel: a comparative, clinical review. Headache. 2013 Jun;53(6):881-900. doi: 10.1111/head.12123. PMID: 23721236.
20. Siirtola P, Koskimäki H, Mönttinen H, Röning J. Using Sleep Time Data from Wearable Sensors for Early Detection of Migraine Attacks. Sensors (Basel). 2018 Apr 28;18(5):1374. doi: 10.3390/s18051374. PMID: 29710791; PMCID: PMC5981434.
21. Pagán, J.; De Orbe, M.I.; Gago, A.; Sobrado, M.; Risco-Martín, J.L.; Mora, J.V.; Moya, J.M.; Ayala, J.L. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data. Sensors 2015, 15, 15419-15442.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Julia Jaworowska, Damian Osiński, Zuzanna Kawa, Maria Kasprzak, Aleksandra Jędrzejewska, Aleksandra Jureczko, Klaudia Kleczaj, Valentyna Levadna, Gabriela Babiarz, Julia Kanarszczuk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 9
Number of citations: 0