Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Health Benefits and Overuse Risks of Cycling: Biomechanical Mechanisms, Injury Patterns, and Evidence-Based Preventive Strategies
  • Home
  • /
  • Health Benefits and Overuse Risks of Cycling: Biomechanical Mechanisms, Injury Patterns, and Evidence-Based Preventive Strategies
  1. Home /
  2. Archives /
  3. Vol. 51 (2026) /
  4. Medical Sciences

Health Benefits and Overuse Risks of Cycling: Biomechanical Mechanisms, Injury Patterns, and Evidence-Based Preventive Strategies

Authors

  • Marek Wojciechowicz Medical University of Gdańsk https://orcid.org/0009-0000-3963-6805
  • Miłosz Rogiński Medical University of Gdańsk https://orcid.org/0009-0007-1863-1416
  • Marta Brzęcka Medical University of Warsaw, 02-091 Warszawa, Poland https://orcid.org/0009-0007-1853-1415
  • Stanisław Rogiński Poznań University of Medical Sciences named after Karol Marcinkowski, 61-701 Poznań, Poland https://orcid.org/0009-0007-7867-512X
  • Karol Krupiniewicz Janusz Korczak Provincial Specialist Hospital in Słupsk, 76-200 Słupsk, Poland https://orcid.org/0009-0004-4255-4412
  • Mariusz Suchcicki Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Masuria Oncology Center in Olsztyn, 10-228 Olsztyn, Poland https://orcid.org/0009-0008-6988-4664
  • Krzysztof Rogiński Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland https://orcid.org/0009-0003-9820-2443
  • Łukasz Chojnowski Polish Red Cross Maritime Hospital in Gdynia, 81-519 Gdynia, Poland https://orcid.org/0009-0005-6077-8636
  • Katarzyna Mazurek Medical University of Warsaw, 02-091 Warszawa, Poland https://orcid.org/0009-0007-4656-0897
  • Anna Dominiczak Medical University of Warsaw, 02-091 Warszawa, Poland https://orcid.org/0009-0008-5984-2866

DOI:

https://doi.org/10.12775/QS.2026.51.68571

Keywords

Cycling, Active commuting, Physical activity, All-cause mortality, Cardiometabolic health, Biomechanics, Injury prevention, Rehabilitation

Abstract

Background. Cycling is widely used for active transport and recreation and is associated with favourable long-term health outcomes. At the same time, cycling-related harm includes traumatic injuries and overuse conditions, and the clinical burden may be underestimated in routine surveillance.

Aim. To summarise health benefits alongside overuse risks and to integrate biomechanical mechanisms, injury patterns, and practical prevention and rehabilitation strategies. Material and Methods. This manuscript is a narrative review; evidence was synthesised narratively, with reporting transparency informed by PRISMA 2020 and qualitative appraisal of systematic reviews supported by AMSTAR 2.

Results. The included evidence supports associations between cycling and lower all-cause mortality and favourable cardiometabolic outcomes, including patterns consistent with reduced type 2 diabetes risk across cycling-volume categories. Biomechanical studies highlight modifiable factors that may influence kinematics and internal loading, including cadence/workload, saddle height, cleat alignment, posture and hand position, and vibration-related exposure. Prevention sources support multi-component approaches (e.g., fit-related adjustments, symptom-focused mitigation, strengthening/supportive interventions, and load-management concepts). Rehabilitation sources describe cycling-based modalities across heterogeneous clinical contexts with condition-specific outcomes and comparators.

Conclusions. In this reference set, cycling is associated with lower all-cause mortality and favourable cardiometabolic outcomes, although most long-term data are observational. The greatest net benefit is likely when participation is paired with safety measures and progression, supported by modifiable biomechanics and multi-component prevention and rehabilitation strategies, and injury evidence underscores the importance of trauma risk reduction, including helmet-related safety in children and adolescents.

References

1. Kelly P, Kahlmeier S, Götschi T, Orsini N, Richards J, Roberts N, Scarborough P, Foster C. Systematic review and meta-analysis of reduction in all-cause mortality from walking and cycling and shape of dose–response relationship. Int J Behav Nutr Phys Act. 2014;11:132. https://doi.org/10.1186/s12966-014-0132-x

2. Celis-Morales CA, Lyall DM, Welsh P, Anderson J, Steell L, Guo Y, Maldonado R, Mackay DF, Pell JP, Sattar N, Gill JMR. Association between active commuting and incident cardiovascular disease, cancer, and mortality: prospective cohort study. BMJ. 2017;357:j1456. https://doi.org/10.1136/bmj.j1456

3. Friel C, Walsh D, Whyte B, Dibben C, Feng Z, Baker G, Kelly P, Demou E, Dundas R. Health benefits of pedestrian and cyclist commuting: evidence from the Scottish Longitudinal Study. BMJ Public Health. 2024;2:e001295. https://doi.org/10.1136/bmjph-2024-001295

4. Rasmussen MG, Grøntved A, Blond K, Overvad K, Tjønneland A, Jensen MK, Østergaard L. Associations between recreational and commuter cycling, changes in cycling, and type 2 diabetes risk: a cohort study of Danish men and women. PLoS Med. 2016;13(7):e1002076. https://doi.org/10.1371/journal.pmed.1002076

5. Nordengen S, Andersen LB, Solbraa AK, Riiser A. Cycling is associated with a lower incidence of cardiovascular diseases and death: a systematic review and meta-analysis. Br J Sports Med. 2019;53(14):870-878. https://doi.org/10.1136/bjsports-2018-099099

6. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput J-P, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, van der Ploeg HP, Willumsen JF. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-1462. https://doi.org/10.1136/bjsports-2020-102955

7. Rooney D, Sarriegui I, Heron N. ‘As easy as riding a bike’: a systematic review of injuries and illness in road cycling. BMJ Open Sport Exerc Med. 2020;6(1):e000840. https://doi.org/10.1136/bmjsem-2020-000840

8. Swedler DI, Ali B, Hoffman R, Leonardo J, Romano E, Miller TR. Injury and fatality risks for child pedestrians and cyclists on public roads. Inj Epidemiol. 2024;11(1):15. https://doi.org/10.1186/s40621-024-00497-2

9. Björnstig J, Bylund P-O, Björnstig U. Vehicle-related injuries in and around a medium sized Swedish city – bicyclist injuries caused the heaviest burden on the medical sector. Inj Epidemiol. 2017;4:4. https://doi.org/10.1186/s40621-016-0101-8

10. Kaushik R, Krisch IM, Schroeder DR, Flick R, Nemergut ME. Pediatric bicycle-related head injuries: a population-based study in a county without a helmet law. Inj Epidemiol. 2015;2:16. https://doi.org/10.1186/s40621-015-0048-1

11. Clancy CE, Gatti AA, Ong CF, Maly MR, Delp SL. Muscle-driven simulations and experimental data of cycling. Sci Rep. 2023;13:21534. https://doi.org/10.1038/s41598-023-47945-5

12. Martín-Sosa E, Mayo J, Ojeda J. Effects of workload on 3D joint moments in cycling and their implications for injury prevention. Front Bioeng Biotechnol. 2025;13:1657558. https://doi.org/10.3389/fbioe.2025.1657558

13. Bing F, Zhang G, Wei L, Zhang M. A machine learning approach for saddle height classification in cycling. Front Sports Act Living. 2025;7:1607212. https://doi.org/10.3389/fspor.2025.1607212

14. Flores HS, Liang YW, Loh PY, Morinaga K, Muraki S. Biomechanical effects of saddle height changes in leisure cycling with unilateral transtibial prostheses: a simulated study. PLoS One. 2025;20(1):e0317121. https://doi.org/10.1371/journal.pone.0317121

15. Flores HS, Yeoh WL, Loh PY, Morinaga K, Muraki S. Correction: Biomechanical effects of saddle height changes in leisure cycling with unilateral transtibial prostheses: a simulated study. PLoS One. 2025;20(4):e0321575. https://doi.org/10.1371/journal.pone.0321575

16. Rohlmann A, Zander T, Graichen F, Schmidt H, Bergmann G. Spinal loads during cycling on an ergometer. PLoS One. 2014;9(4):e95497. https://doi.org/10.1371/journal.pone.0095497

17. Ramos-Ortega J, Domínguez G, Castillo JM, Fernández-Seguín L, Munuera PV. Angular position of the cleat according to torsional parameters of the cyclist’s lower limb. Clin J Sport Med. 2014;24(3):251-255. https://doi.org/10.1097/JSM.0000000000000027

18. Skovereng K, Aasvold LO, Ettema G. On the effect of changing handgrip position on joint specific power and cycling kinematics in recreational and professional cyclists. PLoS One. 2020;15(8):e0237768. https://doi.org/10.1371/journal.pone.0237768

19. Rakheja S, Dong RG, Patra S, Boileau P-É, Marcotte P, Warren C. Biodynamics of the human body under whole-body vibration: synthesis of the reported data. Int J Ind Ergon. 2010;40(5):580-610. https://doi.org/10.1016/j.ergon.2010.06.005

20. Sirisena DC, Sim SH-S, Lim I, Rajaratnam V. Median and ulnar nerve injuries in cyclists: a narrative review. Biomedicine (Taipei). 2021;11(4):1-12. https://doi.org/10.37796/2211-8039.1143

21. Litwinowicz K, Choroszy M, Wróbel A. Strategies for reducing the impact of cycling on the perineum in healthy males: systematic review and meta-analysis. Sports Med. 2021;51(2):275-287. https://doi.org/10.1007/s40279-020-01363-z

22. Jemni M, Gu Y, Hu Q, Marina M, Fessi MSS, Moalla W, Mkaouer B, Konukman F. Vibration cycling did not affect energy demands compared to normal cycling during maximal graded test. Front Physiol. 2019;10:1083. https://doi.org/10.3389/fphys.2019.01083

23. Scoz RD, Amorim CF, Espindola T, Santiago M, Mendes JJB, de Oliveira PR, Ferreira LMA, Brito RN. Discomfort, pain and fatigue levels of 160 cyclists after a kinematic bike-fitting method: an experimental study. BMJ Open Sport Exerc Med. 2021;7(3):e001096. https://doi.org/10.1136/bmjsem-2021-001096

24. Montalvo-Pérez A, Alejo LB, Valenzuela PL, Gil-Cabrera J, Talavera E, Lucia A, Barranco-Gil D. Traditional versus velocity-based resistance training in competitive female cyclists: a randomized controlled trial. Front Physiol. 2021;12:586113. https://doi.org/10.3389/fphys.2021.586113

25. Keay N, Francis G, Entwistle I, Hind K. Clinical evaluation of education relating to nutrition and skeletal loading in competitive male road cyclists at risk of relative energy deficiency in sports (RED-S): 6-month randomised controlled trial. BMJ Open Sport Exerc Med. 2019;5(1):e000523. https://doi.org/10.1136/bmjsem-2019-000523

26. Soligard T, Schwellnus M, Alonso J-M, Bahr R, Clarsen B, Dijkstra HP, Gabbett T, Gleeson M, Hägglund M, Hutchinson MR, Janse van Rensburg C, Khan KM, Meeusen R, Orchard JW, Pluim BM, Raftery M, Budgett R, Engebretsen L. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):1030-1041. https://doi.org/10.1136/bjsports-2016-096581

27. Almquist NWA, Eriksen HB, Wilhelmsen M, Hamarsland H, Ing S, Ellefsen S, Sandbakk Ø, Rønnestad BR, Skovereng K. No differences between 12 weeks of block- vs. traditional-periodized training in performance adaptations in trained cyclists. Front Physiol. 2022;13:837634. https://doi.org/10.3389/fphys.2022.837634

28. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71

29. Quality in Sport. Submissions (Submission Preparation Checklist; Author Guidelines). Academic Platform of Journals (Nicolaus Copernicus University). Accessed January 6, 2026. https://apcz.umk.pl/QS/about/submissions

30. Rewald S, Mesters I, Lenssen AF, Emans PJ, Wijnen W, de Bie RA. Effect of aqua-cycling on pain and physical functioning compared with usual care in patients with knee osteoarthritis: study protocol of a randomised controlled trial. BMC Musculoskelet Disord. 2016;17:88. https://doi.org/10.1186/s12891-016-0939-5

31. Jin Y, Geng X, Wang Q, Xue F, Lu S, Huang L. Psychosocial and physiological health outcomes of outdoor green exercise versus indoor exercise in knee osteoarthritis patients coexisting with type 2 diabetes mellitus: a randomized controlled trial. Front Endocrinol (Lausanne). 2025;16:1560536. https://doi.org/10.3389/fendo.2025.1560536

32. Kotsifaki R, Korakakis V, King E, Barbosa O, Maree D, Pantouveris M, Bjerregaard A, Luomajoki J, Wilhelmsen J, Whiteley R. Aspetar clinical practice guideline on rehabilitation after anterior cruciate ligament reconstruction. Br J Sports Med. 2023;57:500. https://doi.org/10.1136/bjsports-2022-106158

33. Artz N, Elvers KT, Lowe CM, Sackley C, Jepson P, Beswick AD. Effectiveness of physiotherapy exercise following total knee replacement: systematic review and meta-analysis. BMC Musculoskelet Disord. 2015;16:15. https://doi.org/10.1186/s12891-015-0469-6

34. Way KL, Vidal-Almela S, Keast M-L, Hans H, Pipe AL, Reed JL. The feasibility of implementing high-intensity interval training in cardiac rehabilitation settings: a retrospective analysis. BMC Sports Sci Med Rehabil. 2020;12:38. https://doi.org/10.1186/s13102-020-00186-9

35. Baughn M, Arellano V, Hawthorne-Crosby B, Lightner JS, Grimes A, King G. Physical activity, balance, and bicycling in older adults. PLoS One. 2022;17(12):e0273880. https://doi.org/10.1371/journal.pone.0273880

36. Riiser A, Bere E, Andersen LB, Nordengen S. E-cycling and health benefits: a systematic literature review with meta-analyses. Front Sports Act Living. 2022;4:1031004. https://doi.org/10.3389/fspor.2022.1031004

37. Logan G, Somers C, Baker G, Connell H, Gray S, Kelly P, McIntosh E, Welsh P, Gray CM, Gill JMR. Benefits, risks, barriers, and facilitators to cycling: a narrative review. Front Sports Act Living. 2023;5:1168357. https://doi.org/10.3389/fspor.2023.1168357

38. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, Henry DA. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. https://doi.org/10.1136/bmj.j4008

Quality in Sport

Downloads

  • PDF

Published

2026-02-17

How to Cite

1.
WOJCIECHOWICZ, Marek, ROGIŃSKI, Miłosz, BRZĘCKA, Marta, ROGIŃSKI, Stanisław, KRUPINIEWICZ, Karol, SUCHCICKI, Mariusz, ROGIŃSKI, Krzysztof, CHOJNOWSKI, Łukasz, MAZUREK, Katarzyna and DOMINICZAK, Anna. Health Benefits and Overuse Risks of Cycling: Biomechanical Mechanisms, Injury Patterns, and Evidence-Based Preventive Strategies. Quality in Sport. Online. 17 February 2026. Vol. 51, p. 68571. [Accessed 17 February 2026]. DOI 10.12775/QS.2026.51.68571.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 51 (2026)

Section

Medical Sciences

License

Copyright (c) 2026 Marek Wojciechowicz, Miłosz Rogiński, Marta Brzęcka, Stanisław Rogiński, Karol Krupiniewicz, Mariusz Suchcicki, Krzysztof Rogiński, Łukasz Chojnowski, Katarzyna Mazurek, Anna Dominiczak

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Cycling, Active commuting, Physical activity, All-cause mortality, Cardiometabolic health, Biomechanics, Injury prevention, Rehabilitation
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop