The Role of Artificial Intelligence and Machine Learning in Modern Medicine: A Literature Review
DOI:
https://doi.org/10.12775/QS.2026.51.68548Keywords
Artificial intelligence, Machine Learning, Clinical Decision Support Systems, Diagnostic Accuracy, deep learning in medicineAbstract
Artificial Intelligence (AI) and Machine Learning (ML) are rapidly transforming modern medicine by helping in processing great volumes of clinical data with exceptional speed and accuracy. As medical knowledge expands and guidelines change, AI tools support the management of information overload and improve clinical workflows.
The aim of this article is to review concrete examples of AI and ML applications across various medical specialties, focusing of their ability to accelerate processes and enhance diagnostic accuracy.
In radiology, AI models demonstrate better performance in chest imaging and comparable accuracy in mammography compared to doctors, while reducing the impact of human factors such as fatigue. In cancer care, AI allows for multi-omics integration, precise pathological evaluation (e.g. GastroMIL model) and prognostic forecasting. Dermatological studies reveal that AI algorithms can outperform dermatologists in classifying skin leisons (72,1% vs 65,78% accuracy). In cardiology, AI enhances risk stratification beyond traditional scales and demonstrates higher sensitivity in ECG interpretation compared to healthcare professionals.
Through real-time monitoring of hemodynamic stability and postoperative pain management, anesthesiology has integrated AI into clinical practice to improve accuracy of detection of hypotension by 40%. Preoperatively, AI provides assistance to assess risk and offers assistance to the perioperative team during the surgical procedure. AI also improves medical record documentation and decreases the administrative burden of documentation on the physician. AI systems currently augment our clinical intelligence by overcoming limitations in human cognition such as fatigue and algorithmically processing large volume datasets on a daily basis to improve diagnostic accuracy, treatment personalization and efficiency of healthcare.
References
Aslitdinova, M. . (2025). HOW ARTIFICIAL INTELLIGENCE HELPS US IN OUR DAILY LIFE. International Journal of Artificial Intelligence, 1(4), 538–542. Retrieved from https://inlibrary.uz/index.php/ijai/article/view/98893
Vivek Kaul, Sarah Enslin, Seth A. Gross, History of artificial intelligence in medicine,Gastrointestinal Endoscopy, Volume 92, Issue 4, 2020, Pages 807-812, ISSN 0016-5107, https://doi.org/10.1016/j.gie.2020.06.040.
(https://www.sciencedirect.com/science/article/pii/S0016510720344667)
Hirani, R.; Noruzi, K.; Khuram, H.; Hussaini, A.S.; Aifuwa, E.I.; Ely, K.E.; Lewis, J.M.; Gabr, A.E.; Smiley, A.; Tiwari, R.K.; et al. Artificial Intelligence and Healthcare: A Journey through History, Present Innovations, and Future Possibilities. Life 2024, 14, 557. https://doi.org/10.3390/life14050557
Bellini V, Cascella M, Cutugno F, Russo M, Lanza R, Compagnone C, Bignami EG. Understanding basic principles of Artificial Intelligence: a practical guide for intensivists. Acta Biomed. 2022 Oct 26;93(5):e2022297. doi: 10.23750/abm.v93i5.13626. PMID: 36300214; PMCID: PMC9686179.
Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017 Apr;69S:S36-S40. doi: 10.1016/j.metabol.2017.01.011. Epub 2017 Jan 11. PMID: 28126242.
Kelly BS, Judge C, Bollard SM, Clifford SM, Healy GM, Aziz A, Mathur P, Islam S, Yeom KW, Lawlor A, Killeen RP. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol. 2022 Nov;32(11):7998-8007. doi: 10.1007/s00330-022-08784-6. Epub 2022 Apr 14. Erratum in: Eur Radiol. 2022 Nov;32(11):8054. doi: 10.1007/s00330-022-08832-1. PMID: 35420305; PMCID: PMC9668941.
Rockall AG, Shelmerdine SC, Chen M. AI and ML in radiology: Making progress. Clin Radiol. 2023 Feb;78(2):81-82. doi: 10.1016/j.crad.2022.10.010. PMID: 36639174.
Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, Lungren MP, Ng AY. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv [preprint] 2017 Nov 14; arXiv:1711.05225v3. Available from: https://arxiv.org/abs/1711.05225v3
Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Tan T, Mertelmeier T, Wallis MG, Andersson I, Zackrisson S, Mann RM, Sechopoulos I. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. J Natl Cancer Inst. 2019 Sep 1;111(9):916-922. doi: 10.1093/jnci/djy222. PMID: 30834436; PMCID: PMC6748773.
Gore JC. Artificial intelligence in medical imaging. Magn Reson Imaging. 2020 May;68:A1-A4. doi: 10.1016/j.mri.2019.12.006. Epub 2019 Dec 16. PMID: 31857130.
Zhang, C., Xu, J., Tang, R. et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.J Hematol Oncol 16, 114 (2023). https://doi.org/10.1186/s13045-023-01514-5
Lin PC, Tsai YS, Yeh YM, Shen MR. Cutting-Edge AI Technologies Meet Precision Medicine to Improve Cancer Care. Biomolecules. 2022 Aug 17;12(8):1133. doi: 10.3390/biom12081133. PMID: 36009026; PMCID: PMC9405970.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25. Erratum in: Nature. 2017 Jun 28;546(7660):686. doi: 10.1038/nature22985. PMID: 28117445; PMCID: PMC8382232.
Krittanawong, C, Zhang, H, Wang, Z. et al. Artificial Intelligence in Precision Cardiovascular Medicine. JACC. 2017 May, 69 (21) 2657–2664.
https://doi.org/10.1016/j.jacc.2017.03.571
Daydulo, Y.D., Thamineni, B.L. & Dawud, A.A. Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals. BMC Med Inform Decis Mak 23, 232 (2023). https://doi.org/10.1186/s12911-023-02326-w
T Kisova, R Herman, H P Meyers, A Demolder, M Martonak, T Palus, A Rafajdus, A Iring, S Smith, E Barbato, Real-world insights from an AI-ECG decision support platform: AI vs. blinded HCP STEMI ECG interpretation, European Heart Journal, Volume 46, Issue Supplement_1, November 2025, ehaf784.1708, https://doi.org/10.1093/eurheartj/ehaf784.1708
Shimada, K., R. Inokuchi, T. Ohigashi, M. Iwagami, M. Tanaka, M. Gosho, and N. Tamiya. 2024. "Artificial intelligence-assisted interventions for perioperative anesthetic management: a systematic review and meta-analysis." BMC Anesthesiology 24. https://doi.org/10.1186/s12871-024-02699-z
Magalhães, M. E. A., C. V. L. d. Silva, H. M. Oliveira, A. B. R. d. Lima, M. T. S. Flores, I. F. Leite, G. A. d. Silva, et al. 2024. "The Use of Artificial Intelligence in Patient Triage in Emergency Departments: an Integrative Review." Revista de Gestão Social e Ambiental. https://doi.org/10.24857/rgsa.v18n12-052
Carneiro, R. A. A. G., and L. A. G. Pereira. 2025. "Depth of Anesthesia Monitoring and Artificial Intelligence." Current Anesthesiology Reports 15. https://doi.org/10.1007/s40140-024-00655-8
Biesheuvel, L., D. Dongelmans, and P. Elbers. 2024. "Artificial intelligence to advance acute and intensive care medicine." Current Opinion in Critical Care 30: 246 - 250. https://doi.org/10.1097/MCC.0000000000001150
Agrawal, H., N. Gupta, H. Tanwar, and N. Panesar. 2025. "Artificial intelligence in gastrointestinal surgery: A minireview of predictive models and clinical applications." Artificial Intelligence in Gastroenterology. https://doi.org/10.35712/aig.v6.i1.108198
Pantelis, A. G., P. Epiphaniou, and D. Lapatsanis. 2025. "Machine learning and artificial intelligence for predicting short and long-term complications following metabolic bariatric surgery - a systematic review." Artificial Intelligence Surgery. https://doi.org/10.20517/ais.2024.104
Leivaditis, V., A. Maniatopoulos, H. Lausberg, F. Mulita, A. Papatriantafyllou, E. Liolis, E. T. Beltsios, A. Adamou, N. Kontodimopoulos, and M. Dahm. 2025. "Artificial Intelligence in Thoracic Surgery: A Review Bridging Innovation and Clinical Practice for the Next Generation of Surgical Care." Journal of Clinical Medicine 14. https://doi.org/10.3390/jcm14082729
Yahanda, A. T., K. Joseph, T. T. Bui, J. K. Greenberg, W. Z. Ray, J. I. Ogunlade, D. Hafez, N. A. Pallotta, B. J. Neuman, and C. A. Molina. 2024. "Current Applications and Future Implications of Artificial Intelligence in Spine Surgery and Research: A Narrative Review and Commentary." Global Spine Journal 15: 1445 - 1454. https://doi.org/10.1177/21925682241290752
Shadid, O., I. Seth, R. Cuomo, W. Rozen, and G. Marcaccini. 2025. "Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation." Journal of Clinical Medicine 14. https://doi.org/10.3390/jcm14134574
Ruiz, N. I., I. C. Salazar, L. X. N. Palacio, C. A. Agudelo, A. M. L. Parra, and J. C. F. Rodriguez. 2025. "Accuracy and Reliability of Artificial Intelligence in Surgical Decision-Making: A Literature Review." Cureus 17. https://doi.org/10.7759/cureus.95337
Othman, D., and A. Kaleem. 2024. "The Intraoperative Role of Artificial Intelligence Within General Surgery: A Systematic Review." Cureus 16. https://doi.org/10.7759/cureus.73006
Yangi, K., T. J. On, Y. Xu, A. S. Gholami, J. Hong, A. G. Reed, P. Puppalla, et al. 2025. "Artificial intelligence integration in surgery through hand and instrument tracking: a systematic literature review." Frontiers in Surgery 12. https://doi.org/10.3389/fsurg.2025.1528362
Fuentes, S. M. S., L. A. F. Chávez, E. M. M. López, C. D. C. Cardona, and L. L. M. Goti. 2024. "The impact of artificial intelligence in general surgery: enhancing precision, efficiency, and outcomes." International Journal of Research in Medical Sciences. https://doi.org/10.18203/2320-6012.ijrms20244129
Osman, E. I. A., M. M. E. M. M. Ismail, M. A. H. Mukhtar, A. U. B. Ahmed, N. A. A. E. Mohamed, and A. A. A. Ibrahim. 2025. "Artificial Intelligence and Robotics in Minimally Invasive and Complex Surgical Procedures: A Systematic Review." Cureus 17. https://doi.org/10.7759/cureus.81339
Kumar, S., R. Gupta, A. Bhalerao, S. Gupta, V. Tandon, and D. Govil. 2025. "Artificial Intelligence in Surgical Gastroenterology: From Predictive Models to Intraoperative Guidance." Apollo Medicine. https://doi.org/10.1177/09760016251369605
Napitupulu, R. P., G. K. Ardli, M. R. Ramadhani, N. O. Dira, and A. K. Sari. 2025. "AI-Powered Innovations in Digestive Surgery: Current Evidence and Future Perspectives - A Systematic Literature." Indonesian Health Journal. https://doi.org/10.58344/ihj.v4i1.677
Causio FA, DE Angelis L, Diedenhofen G, Talio A, Baglivo F; Workshop Participants. Perspectives on AI use in medicine: views of the Italian Society of Artificial Intelligence in Medicine. J Prev Med Hyg. 2024 Aug 31;65(2):E285-E289. doi: 10.15167/2421-4248/jpmh2024.65.2.3261. PMID: 39430984; PMCID: PMC11487733.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Karol Paweł Wiśniewski, Paweł Witkowski, Patryk Bachurski, Gabriela Chmiel, Elisabetta Pierzga, Maja Międlar, Martyna Muda, Szymon Pacek, Bartosz Zarański, Paweł Kalinowski

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 6
Number of citations: 0