Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

The Role of Artificial Intelligence and Machine Learning in Modern Medicine: A Literature Review
  • Home
  • /
  • The Role of Artificial Intelligence and Machine Learning in Modern Medicine: A Literature Review
  1. Home /
  2. Archives /
  3. Vol. 51 (2026) /
  4. Medical Sciences

The Role of Artificial Intelligence and Machine Learning in Modern Medicine: A Literature Review

Authors

  • Karol Paweł Wiśniewski Uniwersytet Rzeszowski https://orcid.org/0009-0004-6561-5070
  • Paweł Witkowski Uniwersytet Rzeszowski https://orcid.org/0009-0002-1083-8424
  • Patryk Bachurski Uniwersytet Rzeszowski https://orcid.org/0009-0004-2021-7589
  • Gabriela Chmiel University of Rzeszów - student https://orcid.org/0009-0009-8416-3598
  • Elisabetta Pierzga Uniwersytet Rzeszowski https://orcid.org/0009-0003-1674-9462
  • Maja Międlar Uniwersytet Rzeszowski https://orcid.org/0009-0004-8612-8861
  • Martyna Muda Uniwersytet Rzeszowski https://orcid.org/0009-0008-1303-0985
  • Szymon Pacek Uniwersytet Rzeszowski https://orcid.org/0009-0003-6605-6074
  • Bartosz Zarański Uniwersytet Rzeszowski https://orcid.org/0009-0002-5952-694X
  • Paweł Kalinowski Uniwersytet Rzeszowski https://orcid.org/0009-0003-1907-7868

DOI:

https://doi.org/10.12775/QS.2026.51.68548

Keywords

Artificial intelligence, Machine Learning, Clinical Decision Support Systems, Diagnostic Accuracy, deep learning in medicine

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are rapidly transforming modern medicine by helping in processing great volumes of clinical data with exceptional speed and accuracy. As medical knowledge expands and guidelines change, AI tools support the management of information overload and improve clinical workflows.

The aim of this article is to review concrete examples of AI and ML applications across various medical specialties, focusing of their ability to accelerate processes and enhance diagnostic accuracy.

In radiology, AI models demonstrate better performance in chest imaging and comparable accuracy in mammography compared to doctors, while reducing the impact of human factors such as fatigue. In cancer care, AI allows for multi-omics integration, precise pathological evaluation (e.g. GastroMIL model) and prognostic forecasting. Dermatological studies reveal that AI algorithms can outperform dermatologists in classifying skin leisons (72,1% vs 65,78% accuracy). In cardiology, AI enhances risk stratification beyond traditional scales and demonstrates higher sensitivity in ECG interpretation compared to healthcare professionals.

Through real-time monitoring of hemodynamic stability and postoperative pain management, anesthesiology has integrated AI into clinical practice to improve accuracy of detection of hypotension by 40%. Preoperatively, AI provides assistance to assess risk and offers assistance to the perioperative team during the surgical procedure. AI also improves medical record documentation and decreases the administrative burden of documentation on the physician. AI systems currently augment our clinical intelligence by overcoming limitations in human cognition such as fatigue and algorithmically processing large volume datasets on a daily basis to improve diagnostic accuracy, treatment personalization and efficiency of healthcare.

References

Aslitdinova, M. . (2025). HOW ARTIFICIAL INTELLIGENCE HELPS US IN OUR DAILY LIFE. International Journal of Artificial Intelligence, 1(4), 538–542. Retrieved from https://inlibrary.uz/index.php/ijai/article/view/98893

Vivek Kaul, Sarah Enslin, Seth A. Gross, History of artificial intelligence in medicine,Gastrointestinal Endoscopy, Volume 92, Issue 4, 2020, Pages 807-812, ISSN 0016-5107, https://doi.org/10.1016/j.gie.2020.06.040.

(https://www.sciencedirect.com/science/article/pii/S0016510720344667)

Hirani, R.; Noruzi, K.; Khuram, H.; Hussaini, A.S.; Aifuwa, E.I.; Ely, K.E.; Lewis, J.M.; Gabr, A.E.; Smiley, A.; Tiwari, R.K.; et al. Artificial Intelligence and Healthcare: A Journey through History, Present Innovations, and Future Possibilities. Life 2024, 14, 557. https://doi.org/10.3390/life14050557

Bellini V, Cascella M, Cutugno F, Russo M, Lanza R, Compagnone C, Bignami EG. Understanding basic principles of Artificial Intelligence: a practical guide for intensivists. Acta Biomed. 2022 Oct 26;93(5):e2022297. doi: 10.23750/abm.v93i5.13626. PMID: 36300214; PMCID: PMC9686179.

Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017 Apr;69S:S36-S40. doi: 10.1016/j.metabol.2017.01.011. Epub 2017 Jan 11. PMID: 28126242.

Kelly BS, Judge C, Bollard SM, Clifford SM, Healy GM, Aziz A, Mathur P, Islam S, Yeom KW, Lawlor A, Killeen RP. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol. 2022 Nov;32(11):7998-8007. doi: 10.1007/s00330-022-08784-6. Epub 2022 Apr 14. Erratum in: Eur Radiol. 2022 Nov;32(11):8054. doi: 10.1007/s00330-022-08832-1. PMID: 35420305; PMCID: PMC9668941.

Rockall AG, Shelmerdine SC, Chen M. AI and ML in radiology: Making progress. Clin Radiol. 2023 Feb;78(2):81-82. doi: 10.1016/j.crad.2022.10.010. PMID: 36639174.

Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, Lungren MP, Ng AY. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv [preprint] 2017 Nov 14; arXiv:1711.05225v3. Available from: https://arxiv.org/abs/1711.05225v3

Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Tan T, Mertelmeier T, Wallis MG, Andersson I, Zackrisson S, Mann RM, Sechopoulos I. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. J Natl Cancer Inst. 2019 Sep 1;111(9):916-922. doi: 10.1093/jnci/djy222. PMID: 30834436; PMCID: PMC6748773.

Gore JC. Artificial intelligence in medical imaging. Magn Reson Imaging. 2020 May;68:A1-A4. doi: 10.1016/j.mri.2019.12.006. Epub 2019 Dec 16. PMID: 31857130.

Zhang, C., Xu, J., Tang, R. et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.J Hematol Oncol 16, 114 (2023). https://doi.org/10.1186/s13045-023-01514-5

Lin PC, Tsai YS, Yeh YM, Shen MR. Cutting-Edge AI Technologies Meet Precision Medicine to Improve Cancer Care. Biomolecules. 2022 Aug 17;12(8):1133. doi: 10.3390/biom12081133. PMID: 36009026; PMCID: PMC9405970.

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25. Erratum in: Nature. 2017 Jun 28;546(7660):686. doi: 10.1038/nature22985. PMID: 28117445; PMCID: PMC8382232.

Krittanawong, C, Zhang, H, Wang, Z. et al. Artificial Intelligence in Precision Cardiovascular Medicine. JACC. 2017 May, 69 (21) 2657–2664.

https://doi.org/10.1016/j.jacc.2017.03.571

Daydulo, Y.D., Thamineni, B.L. & Dawud, A.A. Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals. BMC Med Inform Decis Mak 23, 232 (2023). https://doi.org/10.1186/s12911-023-02326-w

T Kisova, R Herman, H P Meyers, A Demolder, M Martonak, T Palus, A Rafajdus, A Iring, S Smith, E Barbato, Real-world insights from an AI-ECG decision support platform: AI vs. blinded HCP STEMI ECG interpretation, European Heart Journal, Volume 46, Issue Supplement_1, November 2025, ehaf784.1708, https://doi.org/10.1093/eurheartj/ehaf784.1708

Shimada, K., R. Inokuchi, T. Ohigashi, M. Iwagami, M. Tanaka, M. Gosho, and N. Tamiya. 2024. "Artificial intelligence-assisted interventions for perioperative anesthetic management: a systematic review and meta-analysis." BMC Anesthesiology 24. https://doi.org/10.1186/s12871-024-02699-z

Magalhães, M. E. A., C. V. L. d. Silva, H. M. Oliveira, A. B. R. d. Lima, M. T. S. Flores, I. F. Leite, G. A. d. Silva, et al. 2024. "The Use of Artificial Intelligence in Patient Triage in Emergency Departments: an Integrative Review." Revista de Gestão Social e Ambiental. https://doi.org/10.24857/rgsa.v18n12-052

Carneiro, R. A. A. G., and L. A. G. Pereira. 2025. "Depth of Anesthesia Monitoring and Artificial Intelligence." Current Anesthesiology Reports 15. https://doi.org/10.1007/s40140-024-00655-8

Biesheuvel, L., D. Dongelmans, and P. Elbers. 2024. "Artificial intelligence to advance acute and intensive care medicine." Current Opinion in Critical Care 30: 246 - 250. https://doi.org/10.1097/MCC.0000000000001150

Agrawal, H., N. Gupta, H. Tanwar, and N. Panesar. 2025. "Artificial intelligence in gastrointestinal surgery: A minireview of predictive models and clinical applications." Artificial Intelligence in Gastroenterology. https://doi.org/10.35712/aig.v6.i1.108198

Pantelis, A. G., P. Epiphaniou, and D. Lapatsanis. 2025. "Machine learning and artificial intelligence for predicting short and long-term complications following metabolic bariatric surgery - a systematic review." Artificial Intelligence Surgery. https://doi.org/10.20517/ais.2024.104

Leivaditis, V., A. Maniatopoulos, H. Lausberg, F. Mulita, A. Papatriantafyllou, E. Liolis, E. T. Beltsios, A. Adamou, N. Kontodimopoulos, and M. Dahm. 2025. "Artificial Intelligence in Thoracic Surgery: A Review Bridging Innovation and Clinical Practice for the Next Generation of Surgical Care." Journal of Clinical Medicine 14. https://doi.org/10.3390/jcm14082729

Yahanda, A. T., K. Joseph, T. T. Bui, J. K. Greenberg, W. Z. Ray, J. I. Ogunlade, D. Hafez, N. A. Pallotta, B. J. Neuman, and C. A. Molina. 2024. "Current Applications and Future Implications of Artificial Intelligence in Spine Surgery and Research: A Narrative Review and Commentary." Global Spine Journal 15: 1445 - 1454. https://doi.org/10.1177/21925682241290752

Shadid, O., I. Seth, R. Cuomo, W. Rozen, and G. Marcaccini. 2025. "Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation." Journal of Clinical Medicine 14. https://doi.org/10.3390/jcm14134574

Ruiz, N. I., I. C. Salazar, L. X. N. Palacio, C. A. Agudelo, A. M. L. Parra, and J. C. F. Rodriguez. 2025. "Accuracy and Reliability of Artificial Intelligence in Surgical Decision-Making: A Literature Review." Cureus 17. https://doi.org/10.7759/cureus.95337

Othman, D., and A. Kaleem. 2024. "The Intraoperative Role of Artificial Intelligence Within General Surgery: A Systematic Review." Cureus 16. https://doi.org/10.7759/cureus.73006

Yangi, K., T. J. On, Y. Xu, A. S. Gholami, J. Hong, A. G. Reed, P. Puppalla, et al. 2025. "Artificial intelligence integration in surgery through hand and instrument tracking: a systematic literature review." Frontiers in Surgery 12. https://doi.org/10.3389/fsurg.2025.1528362

Fuentes, S. M. S., L. A. F. Chávez, E. M. M. López, C. D. C. Cardona, and L. L. M. Goti. 2024. "The impact of artificial intelligence in general surgery: enhancing precision, efficiency, and outcomes." International Journal of Research in Medical Sciences. https://doi.org/10.18203/2320-6012.ijrms20244129

Osman, E. I. A., M. M. E. M. M. Ismail, M. A. H. Mukhtar, A. U. B. Ahmed, N. A. A. E. Mohamed, and A. A. A. Ibrahim. 2025. "Artificial Intelligence and Robotics in Minimally Invasive and Complex Surgical Procedures: A Systematic Review." Cureus 17. https://doi.org/10.7759/cureus.81339

Kumar, S., R. Gupta, A. Bhalerao, S. Gupta, V. Tandon, and D. Govil. 2025. "Artificial Intelligence in Surgical Gastroenterology: From Predictive Models to Intraoperative Guidance." Apollo Medicine. https://doi.org/10.1177/09760016251369605

Napitupulu, R. P., G. K. Ardli, M. R. Ramadhani, N. O. Dira, and A. K. Sari. 2025. "AI-Powered Innovations in Digestive Surgery: Current Evidence and Future Perspectives - A Systematic Literature." Indonesian Health Journal. https://doi.org/10.58344/ihj.v4i1.677

Causio FA, DE Angelis L, Diedenhofen G, Talio A, Baglivo F; Workshop Participants. Perspectives on AI use in medicine: views of the Italian Society of Artificial Intelligence in Medicine. J Prev Med Hyg. 2024 Aug 31;65(2):E285-E289. doi: 10.15167/2421-4248/jpmh2024.65.2.3261. PMID: 39430984; PMCID: PMC11487733.

Quality in Sport

Downloads

  • PDF

Published

2026-02-07

How to Cite

1.
WIŚNIEWSKI, Karol Paweł, WITKOWSKI, Paweł, BACHURSKI, Patryk, CHMIEL, Gabriela, PIERZGA, Elisabetta, MIĘDLAR, Maja, MUDA, Martyna, PACEK, Szymon, ZARAŃSKI, Bartosz and KALINOWSKI, Paweł. The Role of Artificial Intelligence and Machine Learning in Modern Medicine: A Literature Review. Quality in Sport. Online. 7 February 2026. Vol. 51, p. 68548. [Accessed 7 February 2026]. DOI 10.12775/QS.2026.51.68548.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 51 (2026)

Section

Medical Sciences

License

Copyright (c) 2026 Karol Paweł Wiśniewski, Paweł Witkowski, Patryk Bachurski, Gabriela Chmiel, Elisabetta Pierzga, Maja Międlar, Martyna Muda, Szymon Pacek, Bartosz Zarański, Paweł Kalinowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 6
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Artificial intelligence, Machine Learning, Clinical Decision Support Systems, Diagnostic Accuracy, deep learning in medicine
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop