TBC1D24 mutations- opening the DOORS to the associated syndromes
DOI:
https://doi.org/10.12775/QS.2026.51.68514Keywords
TBC1D24 mutation, DOOR syndrome, Developmental and Epileptic Encephalopathy, Deafness, GeneticAbstract
Introduction
TBC1D24 mutations encompass a vast variety of very rare disorders, which can manifest in a wide array of manifestations. The phenotypes include the most common DOORS syndrome, as well as Developmental and Epileptic Encephalopathy with other epileptic syndromes, DFNB- Autosomal recessive nonsyndromic hearing loss and DFNA- Autosomal dominant nonsyndromic hearing loss. With the increasing availability of the genetic studies, there has been a steady increase in the cases reported in the literature, showing a growing increase in the importance of this mutation in developmental diseases.
Aim
To summarize current knowledge about the pathophysiology of the TBC1D24 mutations, clinical manifestations, their epidemiology, diagnosis and potential treatment of the patients with the focus on most common signs and symptoms.
Material and methods
A systematic literature review was conducted through PubMed database and Google Scholar, using the keywords “DOOR syndrome”, “DOORS syndrome”, “TBC1D24”, “Developmental and Epileptic Encephalopathy”, “DEE”, “Autosomal recessive nonsyndromic hearing loss”, “Autosomal dominant nonsyndromic hearing loss”, “DFNA” and “DFNB”.
References
1. N. C. Nevin, P. S. Thomas, J. Calvert, and M. Reid McC., “Deafness, onycho-osteodystrophy, mental retardation (DOOR) syndrome,” Am. J. Med. Genet., vol. 13, no. 3, pp. 325–332, 1982, doi: 10.1002/AJMG.1320130316.
2. N. Duru, S. A. U. Iseri, N. Selç, and A. Tolun, “Early-onset progressive myoclonic epilepsy with dystonia mapping to 16pter-p13.3,” J. Neurogenet., vol. 24, no. 4, pp. 207–215, Dec. 2010, doi: 10.3109/01677063.2010.514368.
3. F. A. De Falco, L. Majello, R. Santangelo, M. Stabile, F. D. Bricarelli, and F. Zara, “Familial infantile myoclonic epilepsy: clinical features in a large kindred with autosomal recessive inheritance,” Epilepsia, vol. 42, no. 12, pp. 1541–1548, 2001, doi: 10.1046/J.1528-1157.2001.26701.X.
4. S. Balestrini, P. M. Campeau, D. Mei, R. Guerrini, and S. Sisodiya, TBC1D24-Related Disorders. 1993. 2015 Feb 26 [Updated 2024 Oct 24]. In: Adam MP, Bick S, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2026. Available from: https://www.ncbi.nlm.nih.gov/books/NBK274566/
5. D. Aprile et al., “TBC1D24 regulates axonal outgrowth and membrane trafficking at the growth cone in rodent and human neurons,” Cell Death Differ., vol. 26, no. 11, pp. 2464–2478, Nov. 2019, doi: 10.1038/S41418-019-0313-X.
6. A. Falace et al., “TBC1D24, an ARF6-Interacting Protein, Is Mutated in Familial Infantile Myoclonic Epilepsy,” Am. J. Hum. Genet., vol. 87, no. 3, p. 365, Sep. 2010, doi: 10.1016/J.AJHG.2010.07.020.
7. R. Tona et al., “Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants,” Journal of Biological Chemistry, vol. 300, no. 9, p. 107725, Sep. 2024, doi: 10.1016/J.JBC.2024.107725/ATTACHMENT/4FB2CD23-930A-481F-8BC8-8BCABD8DB636/MMC1.DOCX.
8. J. Defourny, “TBC1D24 is likely to regulate vesicle trafficking in glia-like non-sensory epithelial cells of the cochlea,” Int. J. Dev. Biol., vol. 68, no. 2, pp. 79–83, 2024, doi: 10.1387/IJDB.240060JD.
9. P. M. Campeau et al., “The genetic basis of DOORS syndrome: An exome-sequencing study,” Lancet Neurol., vol. 13, no. 1, pp. 44–58, Jan. 2014, doi: 10.1016/S1474-4422(13)70265-5.
10. B. E. Mucha et al., “A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay,” Genet. Med., vol. 21, no. 5, pp. 1058–1064, May 2019, doi: 10.1038/S41436-018-0290-3.
11. S. Bariş, S. Kırık, and Ö. Balasar, “Importance of targeted next-generation sequencing in pediatric patients with developmental epileptic encephalopathy,” Rev. Assoc. Med. Bras. (1992)., vol. 69, no. 10, 2023, doi: 10.1590/1806-9282.20230547.
12. E. Beauregard-Lacroix et al., “DOORS syndrome and a recurrent truncating ATP6V1B2 variant,” Genet. Med., vol. 23, no. 1, pp. 149–154, Jan. 2021, doi: 10.1038/S41436-020-00950-9.
13. R. Danarti, S. Rahmayani, Y. W. Wirohadidjojo, and W. C. Chen, “Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome: a new case report from Indonesia and review of the literature,” Eur. J. Dermatol., vol. 30, no. 4, pp. 404–407, Jul. 2020, doi: 10.1684/EJD.2020.3850.
14. A. W. James, S. G. Miranda, K. Culver, B. D. Hall, and M. Golabi, “DOOR syndrome: clinical report, literature review and discussion of natural history,” Am. J. Med. Genet. A, vol. 143A, no. 23, pp. 2821–2831, Dec. 2007, doi: 10.1002/AJMG.A.32054.
15. M. Wiśniewska, Z. Siwińska, M. Felczak, T. Wielkoszyński, M. Krawczyński, and A. Latos-Bieleńskad, “A new case of DOOR syndrome,” J. Appl. Genet., vol. 49, no. 1, pp. 101–103, 2008, doi: 10.1007/BF03195254.
16. P. M. Campeau et al., “The genetic basis of DOORS syndrome: an exome-sequencing study,” Lancet Neurol., vol. 13, no. 1, pp. 44–58, Jan. 2014, doi: 10.1016/S1474-4422(13)70265-5.
17. T. Nomura, N. Koyama, M. Yokoyama, A. Awaya, and K. Yokochi, “DOOR syndrome concomitant with non-convulsive status epilepticus and hyperintense cerebellar cortex on T2-weighted imaging,” Brain Dev., vol. 31, no. 1, pp. 75–78, Jan. 2009, doi: 10.1016/J.BRAINDEV.2008.03.006.
18. L. Bilo et al., “Parkinsonism may be part of the symptom complex of DOOR syndrome,” Parkinsonism Relat. Disord., vol. 20, no. 4, pp. 463–465, 2014, doi: 10.1016/J.PARKRELDIS.2014.01.014.
19. X. Gao, P. Dai, and Y. Y. Yuan, “Genetic architecture and phenotypic landscape of deafness and onychodystrophy syndromes,” Hum. Genet., vol. 141, no. 3–4, pp. 821–838, Apr. 2022, doi: 10.1007/S00439-021-02310-2.
20. T. Kosho, N. Miyake, and J. C. Carey, “Coffin-Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing,” Am. J. Med. Genet. C Semin. Med. Genet., vol. 166C, no. 3, pp. 241–251, Sep. 2014, doi: 10.1002/AJMG.C.31415.
21. A. B. S. Giersch and C. C. Morton, “Genetic causes of nonsyndromic hearing loss,” Curr. Opin. Pediatr., vol. 11, no. 6, pp. 551–557, Dec. 1999, doi: 10.1097/00008480-199912000-00014.
22. A. M. M. Oonk, P. L. M. Huygen, H. P. M. Kunst, H. Kremer, and R. J. E. Pennings, “Features of autosomal recessive non‐syndromic hearing impairment: a review to serve as a reference,” Clinical Otolaryngology, vol. 41, no. 5, pp. 487–497, Oct. 2016, doi: 10.1111/coa.12567.
23. B. Vona, I. Nanda, M. A. H. Hofrichter, W. Shehata-Dieler, and T. Haaf, “Non-syndromic hearing loss gene identification: A brief history and glimpse into the future,” Mol. Cell. Probes, vol. 29, no. 5, pp. 260–270, Oct. 2015, doi: 10.1016/J.MCP.2015.03.008.
24. R. Tona et al., “Mouse Models of Human Pathogenic Variants of TBC1D24 Associated with Non-Syndromic Deafness DFNB86 and DFNA65 and Syndromes Involving Deafness,” Genes (Basel)., vol. 11, no. 10, pp. 1–25, Oct. 2020, doi: 10.3390/GENES11101122.
25. A. U. Rehman et al., “Mutations in TBC1D24, a Gene Associated With Epilepsy, Also Cause Nonsyndromic Deafness DFNB86,” The American Journal of Human Genetics, vol. 94, no. 1, pp. 144–152, Jan. 2014, doi: 10.1016/j.ajhg.2013.12.004.
26. M. Aldè et al., “Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review,” Biomedicines, vol. 11, no. 6, p. 1616, Jun. 2023, doi: 10.3390/biomedicines11061616.
27. H. Azaiez et al., “TBC1D24 mutation causes autosomal-dominant nonsyndromic hearing loss,” Hum. Mutat., vol. 35, no. 7, pp. 819–823, 2014, doi: 10.1002/HUMU.22557.
28. D. Oziębło et al., “TBC1D24 emerges as an important contributor to progressive postlingual dominant hearing loss,” Sci. Rep., vol. 11, no. 1, Dec. 2021, doi: 10.1038/S41598-021-89645-Y.
29. I. E. Scheffer, S. Zuberi, H. C. Mefford, R. Guerrini, and A. McTague, “Developmental and epileptic encephalopathies,” Nature Reviews Disease Primers 2024 10:1, vol. 10, no. 1, pp. 61-, Sep. 2024, doi: 10.1038/s41572-024-00546-6.
30. A.-L. Poulat et al., “Homozygous TBC1D24 mutation in two siblings with familial infantile myoclonic epilepsy (FIME) and moderate intellectual disability,” Epilepsy Res., vol. 111, pp. 72–77, Mar. 2015, doi: 10.1016/j.eplepsyres.2015.01.008.
31. M. Muona et al., “A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy,” Nat. Genet., vol. 47, no. 1, p. 39, Jan. 2014, doi: 10.1038/NG.3144.
32. N. Duru, S. A. U. Iseri, N. Selç, and A. Tolun, “Early-onset progressive myoclonic epilepsy with dystonia mapping to 16pter-p13.3,” J. Neurogenet., vol. 24, no. 4, pp. 207–215, Dec. 2010, doi: 10.3109/01677063.2010.514368.
33. J. Zhang et al., “Infantile epilepsy with multifocal myoclonus caused by TBC1D24 mutations,” Seizure, vol. 69, pp. 228–234, Jul. 2019, doi: 10.1016/J.SEIZURE.2019.05.010.
34. K. Lüthy et al., “TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model,” Brain, vol. 142, no. 8, pp. 2319–2335, Aug. 2019, doi: 10.1093/BRAIN/AWZ175.
35. C. V. Amrutkar and R. M. Riel-Romero, “Rolandic Epilepsy Seizure,” StatPearls, Aug. 2023, Accessed: Jan. 15, 2026. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK534845/
36. Y. Murofushi et al., “Oral Baclofen Therapy for Multifocal Spinal Myoclonus with TBC1D24 Variant,” Mov. Disord. Clin. Pract., vol. 10, no. 4, pp. 719–721, Apr. 2023, doi: 10.1002/MDC3.13701.
37. J. Zhang et al., “Infantile epilepsy with multifocal myoclonus caused by TBC1D24 mutations,” Seizure, vol. 69, pp. 228–234, Jul. 2019, doi: 10.1016/j.seizure.2019.05.010.
38. S. Balestrini et al., “TBC1D24 genotype–phenotype correlation: Epilepsies and other neurologic features,” Neurology, vol. 87, no. 1, p. 77, Jul. 2016, doi: 10.1212/WNL.0000000000002807.
39. Q. Shao, X. Shi, B. Ma, J. Zeng, A. Zheng, and W. Xie, “TBC1D24-related familial infantile multifocal myoclonus: Description of a new Chinese pedigree with a 20 year follow up,” Epilepsy Res., vol. 182, May 2022, doi: 10.1016/J.EPLEPSYRES.2022.106923.
40. S. Balestrini et al., “TBC1D24 genotype-phenotype correlation: Epilepsies and other neurologic features,” Neurology, vol. 87, no. 1, pp. 77–85, Jul. 2016, doi: 10.1212/WNL.0000000000002807.
41. S. Liu, M. Zhu, C. Yi, and D. Zeng, “Early rehabilitation interventions for global developmental delay in children: a narrative review,” Front. Pediatr., vol. 13, p. 1576324, 2025, doi: 10.3389/FPED.2025.1576324.
42. A. E. Shearer, M. S. Hildebrand, A. M. Odell, and R. J. Smith, “Genetic Hearing Loss Overview,” GeneReviews®, Apr. 2025, Accessed: Jan. 15, 2026. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1434/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Kacper Szada-Borzyszkowski, Konstancja Owczarenko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 8
Number of citations: 0