The link between Gut Microbiota and Coronary Artery Disease (CAD) - A Review of literature
DOI:
https://doi.org/10.12775/QS.2026.51.68248Keywords
coronary artery disease, cardiovascular disease, gut microbiota, gut microbiome, dysbiosis, SCFAs, TMAOAbstract
Background: Coronary artery disease (CAD) is the leading cause of mortality worldwide. Although established risk factors such as hypertension or dyslipidaemia are well recognized, they do not fully account for the residual cardiovascular risk. Growing evidence suggest that the gut microbiota may play a significant role in development and progression of CAD through inflammatory, metabolic and immune-mediated mechanisms.
Aim: This review aims to summarize current evidence on the association between the gut microbiome, its metabolites and CAD, and to discuss potential therapeutic strategies targeting the gut microbiota in CAD prevention and management.
Materials and methods: The search was conducted using databases such as PubMed or Google Scholar. Following keywords were used: coronary artery disease, cardiovascular disease, gut microbiota, gut microbiome, dysbiosis, SCFAs, TMAO.
Results: Patients with CAD exhibit gut microbiome dysbiosis, characterized by decrease of SCFA-producing bacteria and increase of microorganisms capable of TMAO synthesis. Decreased SCFAs production leads mainly to disrupted intestinal barrier integrity, resulting in leakage of pro-inflammatory LPS. On the other hand, TMAO has been strongly associated with CAD risk factors such as atherosclerosis. Emerging microbiota-targeted interventions like probiotics, prebiotics, symbiotics or fecal microbiota transplant have demonstrated promising results in the management of CAD.
Conclusions: Gut microbiota represents an important and modifiable factor in the pathophysiology of CAD. At present, the dietary modifications offer the most accessible and effective strategy of microbiota modification and further research is needed to define the role of microbiome-related therapies.
References
1. Ralapanawa U, Sivakanesan R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J Epidemiol Glob Health. 2021;11(2):169-177. doi:10.2991/jegh.k.201217.001
2.Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276-289. doi:10.1038/nrcardio.2014.26
3. Ferreira-González I. The epidemiology of coronary heart disease. Rev Esp Cardiol (Engl Ed). 2014;67(2):139-144. doi:10.1016/j.rec.2013.10.002
4. Duggan JP, Peters AS, Trachiotis GD, Antevil JL. Epidemiology of Coronary Artery Disease. Surg Clin North Am. 2022;102(3):499-516. doi:10.1016/j.suc.2022.01.007
5. Piccioni A, de Cunzo T, Valletta F, et al. Gut Microbiota and Environment in Coronary Artery Disease. Int J Environ Res Public Health. 2021;18(8):4242. Published 2021 Apr 16. doi:10.3390/ijerph18084242
6. Zhang B, Wang X, Xia R, Li C. Gut microbiota in coronary artery disease: a friend or foe?. Biosci Rep. 2020;40(5):BSR20200454. doi:10.1042/BSR20200454
7. Yu J, Yang YN, Chen W, et al. Role of gut microbiota and derived metabolites in cardiovascular diseases. iScience. 2025;28(9):113247. Published 2025 Jul 30. doi:10.1016/j.isci.2025.113247
8. Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020;8(1):36. Published 2020 Mar 14. doi:10.1186/s40168-020-00821-0
9. Aguilar EC, Leonel AJ, Teixeira LG, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis. 2014;24(6):606-613. doi:10.1016/j.numecd.2014.01.002
10. McNelis JC, Lee YS, Mayoral R, et al. GPR43 Potentiates β-Cell Function in Obesity. Diabetes. 2015;64(9):3203-3217. doi:10.2337/db14-1938
11. Trøseid M, Andersen GØ, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020;52:102649. doi:10.1016/j.ebiom.2020.102649
12. Kapinsky M, Torzewski M, Büchler C, Duong CQ, Rothe G, Schmitz G. Enzymatically degraded LDL preferentially binds to CD14(high) CD16(+) monocytes and induces foam cell formation mediated only in part by the class B scavenger-receptor CD36. Arterioscler Thromb Vasc Biol. 2001;21(6):1004-1010. doi:10.1161/01.atv.21.6.1004
13. Lent-Schochet D, Silva R, McLaughlin M, Huet B, Jialal I. Changes to trimethylamine-N-oxide and its precursors in nascent metabolic syndrome. Horm Mol Biol Clin Investig. 2018;35(2):/j/hmbci.2018.35.issue-2/hmbci-2018-0015/hmbci-2018-0015.xml. Published 2018 Apr 18. doi:10.1515/hmbci-2018-0015
14, Theofilis P, Vordoni A, Kalaitzidis RG. Trimethylamine N-Oxide Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Metabolites. 2022;12(12):1243. Published 2022 Dec 9. doi:10.3390/metabo12121243
15. Al-Obaide MAI, Singh R, Datta P, et al. Gut Microbiota-Dependent Trimethylamine-N-oxide and Serum Biomarkers in Patients with T2DM and Advanced CKD. J Clin Med. 2017;6(9):86. Published 2017 Sep 19. doi:10.3390/jcm6090086
16. Zhu W, Gregory JC, Org E, et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell. 2016;165(1):111-124. doi:10.1016/j.cell.2016.02.011
17. Cui L, Zhao T, Hu H, Zhang W, Hua X. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. Biomed Res Int. 2017;2017:3796359. doi:10.1155/2017/3796359
18. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. Published 2017 Oct 10. doi:10.1038/s41467-017-00900-1
19. Zhu Q, Gao R, Zhang Y, et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics. 2018;50(10):893-903. doi:10.1152/physiolgenomics.00070.2018
20. Choroszy M, Litwinowicz K, Bednarz R, Roleder T, Lerman A, Toya T, Kamiński K, Sawicka-Śmiarowska E, Niemira M, Sobieszczańska B. Human Gut Microbiota in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Metabolites. 2022; 12(12):1165. https://doi.org/10.3390/metabo12121165
21. Toya T, Corban MT, Marrietta E, et al. Coronary artery disease is associated with an altered gut microbiome composition. PLoS One. 2020;15(1):e0227147. Published 2020 Jan 29. doi:10.1371/journal.pone.0227147
22. Gul S, Durante-Mangoni E. Unraveling the Puzzle: Health Benefits of Probiotics-A Comprehensive Review. J Clin Med. 2024;13(5):1436. Published 2024 Mar 1. doi:10.3390/jcm13051436
23. Sarita B, Samadhan D, Hassan MZ, Kovaleva EG. A comprehensive review of probiotics and human health-current prospective and applications. Front Microbiol. 2025;15:1487641. Published 2025 Jan 6. doi:10.3389/fmicb.2024.1487641
24. Mahdavi-Roshan M, Salari A, Kheirkhah J, Ghorbani Z. The Effects of Probiotics on Inflammation, Endothelial Dysfunction, and Atherosclerosis Progression: A Mechanistic Overview. Heart Lung Circ. 2022;31(5):e45-e71. doi:10.1016/j.hlc.2021.09.006
25. Katsimichas T, Theofilis P, Tsioufis K, Tousoulis D. Gut Microbiota and Coronary Artery Disease: Current Therapeutic Perspectives. Metabolites. 2023;13(2):256. Published 2023 Feb 9. doi:10.3390/metabo13020256
26. Tousoulis D, Guzik T, Padro T, et al. Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovasc Res. 2022;118(16):3171-3182. doi:10.1093/cvr/cvac057
27. Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7(3):491-499. doi:10.1161/CIRCHEARTFAILURE.113.000978
28. Moludi J, Kafil HS, Qaisar SA, Gholizadeh P, Alizadeh M, Vayghyan HJ. Effect of probiotic supplementation along with calorie restriction on metabolic endotoxemia, and inflammation markers in coronary artery disease patients: a double blind placebo controlle7 randomized clinical trial. Nutr J. 2021;20(1):47. Published 2021 Jun 1. doi:10.1186/s12937-021-00703-7
29. Neverovskyi A, Chernyavskyi V, Shypulin V, et al. Probiotic Lactobacillus plantarum may reduce cardiovascular risk: An experimental study. ARYA Atheroscler. 2021;17(4):1-10. doi:10.22122/arya.v17i0.2156
30. Sun B, Ma T, Li Y, et al. Bifidobacterium lactis Probio-M8 Adjuvant Treatment Confers Added Benefits to Patients with Coronary Artery Disease via Target Modulation of the Gut-Heart/-Brain Axes. mSystems. 2022;7(2):e0010022. doi:10.1128/msystems.00100-22
31. Zafar H, Ain NU, Alshammari A, et al. Lacticaseibacillus rhamnosus FM9 and Limosilactobacillus fermentum Y57 Are as Effective as Statins at Improving Blood Lipid Profile in High Cholesterol, High-Fat Diet Model in Male Wistar Rats. Nutrients. 2022;14(8):1654. Published 2022 Apr 15. doi:10.3390/nu14081654
32. Romão da Silva LF, de Oliveira Y, de Souza EL, et al. Effects of probiotic therapy on cardio-metabolic parameters and autonomic modulation in hypertensive women: a randomized, triple-blind, placebo-controlled trial. Food Funct. 2020;11(8):7152-7163. doi:10.1039/d0fo01661f
33. Arabi SM, Bahrami LS, Rahnama I, Sahebkar A. Impact of synbiotic supplementation on cardiometabolic and anthropometric indices in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2022;176:106061. doi:10.1016/j.phrs.2022.106061
34. Winkel P, Hilden J, Hansen JF, et al. Clarithromycin for stable coronary heart disease increases all-cause and cardiovascular mortality and cerebrovascular morbidity over 10years in the CLARICOR randomised, blinded clinical trial. Int J Cardiol. 2015;182:459-465. doi:10.1016/j.ijcard.2015.01.020
35. Chen X, Zhang H, Ren S, et al. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases. Chin Med J (Engl). 2023;136(19):2269-2284. Published 2023 Oct 5. doi:10.1097/CM9.0000000000002206
36. Park JE, Miller M, Rhyne J, Wang Z, Hazen SL. Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers. Nutr Metab Cardiovasc Dis. 2019;29(5):513-517. doi:10.1016/j.numecd.2019.02.003
37. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812-1821. doi:10.1136/gutjnl-2015-309957
38. Sanchez-Rodriguez E, Egea-Zorrilla A, Plaza-Díaz J, et al. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients. 2020;12(3):605. Published 2020 Feb 26. doi:10.3390/nu12030605
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Aleksandra Adamczyk, Maria Ważny , Agnieszka Gancarz , Agata Żak , Michał Gut , Joanna Toporowska-Kaźmierak, Marta Sowińska, Miłosz Tworek , Mateusz Banasik , Damian Bezara

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 8
Number of citations: 0