Antioxidants in Sport: Exercise-Induced Oxidative Stress, Dietary Strategies, and Performance Outcomes – A Review
DOI:
https://doi.org/10.12775/QS.2026.50.68197Keywords
polyphenols, Insulin Sensitivity, dietary strategies, athletic performance, reactive oxidative stress, training adaptation, antioxidant supplementation, exercise-induced oxidative stress, mitochondrial biogenesisAbstract
Background. Exercise induces reactive oxygen species (ROS) production, triggering both adaptive signaling and potential oxidative damage in skeletal muscle. While moderate ROS generation promotes beneficial training adaptations including mitochondrial biogenesis and improved insulin sensitivity, excessive antioxidant supplementation may paradoxically blunt these adaptive responses.
Aim. This narrative review examines current evidence on exercise-induced oxidative stress, the role of dietary antioxidants, and the efficacy of supplementation strategies in athletic populations.
Material and methods. Systematic search of PubMed, PubMed Central, Scopus and Web of Science (January 2026) using keywords: "exercise", "oxidative stress", "antioxidants", "vitamins C and E", "polyphenols", "CoQ10", "melatonin", "athletes", "performance", "recovery". Priority given to randomized controlled trials, meta-analyses and mechanistic reviews.
Results. Chronic high-dose vitamin C (≥1000 mg/day) and E (≥400 IU/day) supplementation blunts training-induced mitochondrial biogenesis and endogenous antioxidant enzyme upregulation without consistent performance benefits. In contrast, polyphenol-rich fruits and
References
1. Mankowski RT, Anton SD, Buford TW, Leeuwenburgh C. Dietary antioxidants as modifiers of physiologic adaptations to exercise. Med Sci Sports Exerc. 2015;47(9):1857-1868. https://doi.org/10.1249/MSS.0000000000000620
2. Yavari A, Javadi M, Mirmiran P, Bahadoran Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J Sports Med. 2015;6(1):e24898. https://doi.org/10.5812/asjsm.24898
3. Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol. 2020;35:101471. https://doi.org/10.1016/j.redox.2020.101471
4. Vargas-Mendoza N, Morales-González Á, Madrigal-Santillán EO, et al. Phytochemicals and modulation of exercise-induced oxidative stress: a novel overview of antioxidants. Am J Transl Res. 2022;14(11):8292-8314. PubMed ID: 36505319
5. McLeay Y, Barnes MJ, Mundel T, et al. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr. 2012;9:19. https://doi.org/10.1186/1550-2783-9-19
6. Ayaz A, Zaman W, Radák Z, Gu Y. Harmony in motion: unraveling the nexus of sports, plant-based nutrition, and antioxidants for peak performance. Antioxidants (Basel). 2024;13(4):437. https://doi.org/10.3390/antiox13040437
7. Howatson G, McHugh MP, Hill JA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843-852. https://doi.org/10.1111/j.1600-0838.2009.01005.x
8. Rickards L, Lynn A, Harrop D, Barker ME, Russell M, Ranchordas MK. Effect of polyphenol-rich foods, juices, and concentrates on recovery from exercise-induced muscle damage: a systematic review and meta-analysis. Nutrients. 2021;13(9):2988. https://doi.org/10.3390/nu13092988
9. Lyall KA, Hurst SM, Cooney J, et al. Short-term blackcurrant extract consumption modifies exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R70-R81. https://doi.org/10.1152/ajpregu.90740.2008
10. Tsai KL, Huang PH, Kao CL, et al. Coenzyme Q10 supplementation in athletes: a systematic review. Nutrients. 2023;15(18):3990. https://doi.org/10.3390/nu15183990
11. Leonardo-Mendonça RC, Ocampo-Mascaró J, Guerra-Hernández E, García-Alonso J. The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes. Appl Physiol Nutr Metab. 2017;42(7):700-707. https://doi.org/10.1139/apnm-2016-0677
12. Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules. 2015;20(10):18886-18906. https://doi.org/10.3390/molecules201018886
13. Ortiz-Franco M, Martín-Rodríguez A, Gantiva-Díaz CA, et al. Effect of melatonin supplementation on antioxidant status and DNA damage in high-intensity trained athletes. Int J Sports Med. 2017;38(14): 1117-1125. https://doi.org/10.1055/s-0043-119881
14. de Souza Gonçalves L, Stampler LL, Stoll NM, et al. Impact of melatonin supplementation on sports performance and circulating biomarkers in highly trained athletes: a systematic review of randomized controlled trials. Nutrients. 2024;16(7):1011. https://doi.org/10.3390/nu16071011
15. Lee E, Park H-Y, Kim S-W, Sun Y, Choi J-H, Seo J, Jung Y-P, Kim A-J, Kim J, Lim K. Enhancing supplemental effects of acute natural antioxidant derived from yeast fermentation and vitamin C on sports performance in triathlon athletes: a randomized, double-blinded, placebo-controlled, crossover trial. Nutrients. 2023;15(15):3324. https://doi.org/10.3390/nu15153324
16. Silva AM, San-Miguel B, Martínez-Flórez S, et al. Effects of dietary strategies on exercise-induced oxidative stress: a narrative review of human studies. Int J Environ Res Public Health. 2021;18(7):3591. https://doi.org/10.3390/ijerph18073591
17. Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA. 2009;106(21):8665-8670. https://doi.org/10.1073/pnas.0903485106
18. Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci. 2014;14(1):160-168. https://doi.org/10.1080/17461391.2012.729090
19. Gomez-Cabrera MC, Domenech E, Romagnoli M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142-149. https://doi.org/10.1093/ajcn/87.1.142
20. Bowtell JL, Sumners DP, Dyer A, Fox P, Mileva KN. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc. 2011;43(8):1544-1551. https://doi.org/10.1249/MSS.0b013e318215db73
21. Ostojic SM, Arsic M, Prodanovic S, Vukotic M, Jovanov P. Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers. J Int Soc Sports Nutr. 2022;19(1):318-329. https://doi.org/10.1186/s12970-022-00611-z
22. Tang Y, Du J, Xu J, Cao X, Gu Y. Polyphenol supplementation and antioxidant status in athletes: a narrative review. Nutrients. 2023;15(1):158. https://doi.org/10.3390/nu15010158
23. Canals-Garzón C, Guisado-Barrilao R, Martínez-García D, et al. Effect of antioxidant supplementation on markers of oxidative stress and muscle damage after strength exercise: a systematic review. Int J Environ Res Public Health. 2022;19(3):1803. https://doi.org/10.3390/ijerph19031803
24. Thirupathi A, de Sousa Neto IV, Freitas de Sousa Neto I, et al. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Front Physiol. 2018;9:1529. https://doi.org/10.3389/fphys.2018.01529
25. Higgins MR, Izadi A, Kaviani M. Antioxidants and exercise performance: with a focus on vitamin E and C supplementation. Int J Environ Res Public Health. 2020;17(22):8452. https://doi.org/10.3390/ijerph17228452
26. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243-1276. https://doi.org/10.1152/physrev.00031.2007
27. Ji LL. Exercise-induced modulation of antioxidant defense. Ann N Y Acad Sci. 2002;959:82-92. https://doi.org/10.1111/j.1749-6632.2002.tb02085.x
28. Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE, Wiley RL. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32(9):1576-1581. https://doi.org/10.1097/00005768-200009000-00008
29. Nikolaidis MG, Kyparos A, Spanou C, et al. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues. J Exp Biol. 2012;215(Pt 10):1615-1625. https://doi.org/10.1242/jeb.067470
30. Peternelj TT, Coombes JS. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med. 2011;41(12):1043-1069. https://doi.org/10.2165/11594400-000000000-00000
31. Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. 2016;594(18):5135-5147. https://doi.org/10.1113/JP270654
32. Connolly DAJ, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679-683. https://doi.org/10.1136/bjsm.2005.025429
33. Sarmiento A, Diaz V, Abellán J, et al. Short-term ubiquinol supplementation reduces oxidative stress associated with strenuous exercise in healthy adults: a randomized trial. BioFactors. 2016;42(6):612-622. https://doi.org/10.1002/biof.1297
34. Ammar A, Turki M, Chtourou H, et al. Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients. 2017;9(8):819. https://doi.org/10.3390/nu9080819
35. Da Silva LA, Tromm CB, Bom KF, et al. Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab. 2014;39(1):101-104. https://doi.org/10.1139/apnm-2012-0229
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Tamara Korohod, Martyna Pietrzak-Chmiel , Paulina Ramaneckaite, Agnieszka Binkiewicz, Maciej Ślesik

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 17
Number of citations: 0