Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Application of Machine Learning Algorithms in Automatic Anesthetic Drug Delivery Systems: A literature review
  • Home
  • /
  • Application of Machine Learning Algorithms in Automatic Anesthetic Drug Delivery Systems: A literature review
  1. Home /
  2. Archives /
  3. Vol. 51 (2026) /
  4. Medical Sciences

Application of Machine Learning Algorithms in Automatic Anesthetic Drug Delivery Systems: A literature review

Authors

  • Jakub Michał Lichoń Szpital Specjalistyczny im. Jędrzeja Śniadeckiego w Nowym Sączu, 10 Młyńska street, 33-300 Nowy Sącz https://orcid.org/0009-0006-7691-357X
  • Paweł Jan Kuna Beskid Oncology Center - Municipal Hospital of John Paul II in Bielsko-Biała, Wyzwolenia 18, 43-300 Bielsko-Biała, Poland https://orcid.org/0009-0002-2684-7229
  • Wojciech Kuna Zagłębie Oncology Center - Specialist Hospital named after Sz. Starkiewicz in Dąbrowa Górnicza Szpitalna 13, 41-300 Dąbrowa Górnicza https://orcid.org/0009-0008-0245-8679
  • Jakub Mateusz Pietrucha Municipal Hospital in Siemianowice Śląskie 1 Maja 9, 41-100 Siemianowice Śląskie, Poland https://orcid.org/0009-0009-2672-1731
  • Kamil Igor Turczynowski University Hospital in Krakow Jakubowskiego 2, 30-688 Kraków https://orcid.org/0009-0009-7573-4029
  • Mateusz Józef Gołdyn Podhale Specialist hospital in Nowy Targ Szpitalna 14 34-400, Nowy Targ https://orcid.org/0009-0006-2833-598X
  • Konrad Olaf Turczynowski Szpital Uniwersytecki w Krakowie: Krakow, Lesser Poland, PL Kraków Jakubowskiego 2 30-688, Poland https://orcid.org/0009-0007-2331-5928

DOI:

https://doi.org/10.12775/QS.2026.51.68152

Keywords

anesthetic drugs, machine learning, closed-loop system, artificial intelligence

Abstract

The dynamic advancements in artificial intelligence are enabling the integration of machine learning into medical practice. A significant challenge in modern anesthesiology is the need for precise, continuous adjustment of anesthetic drug doses in response to the patient's rapidly changing physiological state. Traditional manual methods of drug delivery often result in excessive variability in the depth of anesthesia and hemodynamic stability. Utilizing machine learning algorithms represents a modern, promising approach designed to enhance the overall quality and safety of anesthetic care.

Aim of the study: The objective of this study is to review the current state of knowledge concerning machine algorithms in automated anesthetic drug delivery systems and to compare these with conventional administration methods, evaluating the benefits and limitations of each approach.

Materials and methods:  A review of selected literature in the PubMed, Google Scholar database was conducted, using the following keywords: “anesthetic drugs”, “machine learning”, “closed-loop system” “artificial intelligence”

Conclusions: The review demonstrates that Machine Learning-driven Closed-Loop Anesthesia Delivery Systems (CLADS) offer superior stability of anesthetic depth and hemodynamic control compared to manual administration. The implementation of AI allows for the personalization of therapy and a significant reduction in drug and gas wastage, supporting the "Green Anesthesia" initiative. Furthermore, automation contributes to better long-term outcomes, such as reduced incidence of postoperative delirium and cognitive dysfunction. However, despite high autonomy, the "human-in-the-loop" paradigm remains essential due to technical artifacts and unforeseen surgical events. Future research should focus on regulatory standardization and the integration of multi-loop systems managing hypnosis, analgesia, and neuromuscular blockade simultaneously.

References

1. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–243. https://doi.org/10.1136/svn-2017-000101

2. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology. 2020;132(2):379–394. DOI: 10.1097/ALN.0000000000002960

3. Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci. 2016;17(11):705-717. DOI: 10.1038/nrn.2016.128

4. Mashour GA, Avidan MS. Intraoperative awareness: controversies and non-controversies. Br J Anaesth. 2015;115 Suppl 1:i20-i26. DOI: 10.1093/bja/aev034

5. Rinehart J, Chawla R, Bein B. A multicenter evaluation of a BIS-guided closed-loop anesthesia delivery system: a randomized controlled trial. Anesth Analg. 2016 Jan;122(1):106-14. doi: 10.1213/ANE.0000000000000769.

6. Hemmerling TM, Charabati S, Zaouter C, Minardi C, Mathieu PA A randomized controlled trial demonstrates that a novel closed-loop propofol system performs better hypnosis control than manual administration. Anesthesiology. 2010. Aug;57(8):725-35. doi: 10.1007/s12630-010-9335-z

7. Budic I, Jevtovic Stoimenov T, Pavlovic D, Marjanovic V, Djordjevic I, Stevic M, Simic D. Clinical Importance of Potential Genetic Determinants Affecting Propofol Pharmacokinetics and Pharmacodynamics. Front Med (Lausanne). 2022 Feb 28;9:809393. doi: 10.3389/fmed.2022.809393.

8. Sinha A, Singh A, Tewari A. The fatigued anesthesiologist: a threat to patient safety? J Anaesthesiol Clin Pharmacol. 2013;29(2):151–159. DOI: 10.4103/0970-9185.111657

9. Weinger MB, Slagle J. Human Factors Research in Anesthesia Patient Safety: Techniques to Elucidate Factors Affecting Clinical Task Performance and Decision Making. J Am Med Inform Assoc. 2002 Nov-Dec;9(6 Suppl 1):s58–63. doi: 10.1197/jamia.M1229.

10. Schüttler J, Schwilden H, Stoeckel H. Pharmacokinetics as applied to total intravenous anaesthesia. Theoretical considerations. Anaesthesia. 1983 Jul;38 Suppl:51-2. doi: 10.1111/j.1365-2044.1983.tb15178.x.

11. Absalom AR, Mani V, De Smet T, Struys MM. Pharmacokinetic models for propofol: defining and illuminating the devil in the detail. Br J Anaesth. 2009;103(1):26-37. DOI: 10.1093/bja/aep143

12. Hemmerling TM, Arbeid E, Wehbe M, et al. Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: a randomized controlled trial. Br J Anaesth. 2013;110(6):1031-9. DOI: 10.1093/bja/aet001

13. Moore BL, Pyeatt LD, Kulkarni V, et al. Reinforcement learning for closed-loop propofol anesthesia: a study in human volunteers. J Mach Learn Res. 2014;15:655–696.

14. Rosow C, Manberg PJ. . 2001;19(4):947-66. Bispectral index monitoring DOI: 10.1016/s0889-8537(01)80018-3

15. Viertiö-Oja H, Maja V, Särkelä M, et al. Description of the Entropy algorithm as applied in the Datex-Ohmeda S/5 Entropy Module. Acta Anaesthesiol Scand. 2004;48(2):154-61. DOI: 10.1111/j.0001-5172.2004.00322.x

16. Dumont GA, Ansermino JM. Closed-loop control of anesthesia: a primer for anesthesiologists. Anesth Analg. 2013 Nov;117(5):1130-8. doi: 10.1213/ANE.0b013e3182973687.

17. Zaouter C, Joosten A, Rinehart J, Struys MMRF, Hemmerling TM. Autonomous Systems in Anesthesia: Where Do We Stand in 2020? A Narrative Review. Anesth Analg. 2020;130(5):1120-1132. DOI: 10.1213/ANE.0000000000004646

18. Gonzalez-Cava JM, Lam J, Karamanoglu M, Pascoal AMB. Robust PID control of propofol anaesthesia: Uncertainty limits performance, not PID structure. Comput Methods Programs Biomed. 2021;198:105783. 10.1016/j.cmpb.2020.105783

19. van Heusden K, Soltesz K, Cooke E, et al. Optimizing robust PID control of propofol anesthesia for children: design and clinical evaluation. IEEE Trans Biomed Eng. 2019;66(10):2918-2923. DOI: 10.1109/TBME.2019.2898194

20. Liu N, Chazot T, Hamada S, et al. Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth Analg. 2011;112(3):546-557.

21. Soltesz K, Hahn JO, Hägglund T, Dumont GA, Ansermino JM. Individualized closed-loop control of propofol anesthesia: A preliminary study. Biomed Signal Process Control. 2013;8(6):500-508. DOI: 10.1213/ANE.0b013e318205680b

22. Ionescu CM, Keyser RD, Torrico BC, et al. Robust predictive control strategy applied for propofol dosing using BIS as a controlled variable during anesthesia. IEEE Trans Biomed Eng. 2008;55(9):2161-2170. DOI: 10.1109/TBME.2008.923142

23. Struys MMRF, De Smet T, Glen JIB, et al. The history of target-controlled infusion. Anesth Analg. 2016;122(1):56-69. DOI: 10.1213/ANE.0000000000001008

24. van Heusden K, Dumont GA, Soltesz K, et al. Design and clinical evaluation of robust PID control of propofol anesthesia in children. IEEE Trans Control Syst Technol. 2014;22(2):491-501. DOI: 10.1109/TCST.2013.2260543

25. Singhal M, Gupta L, Hirani K. A Comprehensive Analysis and Review of Artificial Intelligence in Anaesthesia. Cureus. 2023;15(9):e45038. DOI: 10.7759/cureus.45038

26. Araujo H, Xiao B, Liu C, Zhao Y, Lam HK. Design of Type-1 and Interval Type-2 Fuzzy PID Control for Anesthesia Using Genetic Algorithms. J Intell Learn Syst Appl. 2014;6(2):70-93. DOI: 10.4236/jilsa.2014.62007

27. Lin CS, Li YC, Mok MS, et al. Neural network modeling to predict the hypnotic effect of propofol bolus induction. Proc AMIA Symp. 2002:450-3. PMCID: PMC2244570

28. Mirinejad H, Parastvand H, Hesamian MH. Feedback control of surgical anesthesia: A review. Annu Rev Control. 2020;50:1-26.

29. Wingert T, Lee C, Cannesson M. Machine Learning, Deep Learning, and Closed Loop Devices—Anesthesia Delivery. Anesthesiol Clin. 2021;39(3):565-581. DOI: 10.1016/j.anclin.2021.03.012

30. Li R, Wu Q, Liu J, et al. Monitoring Depth of Anesthesia Based on Hybrid Features and Recurrent Neural Network. Front Neurosci. 2020;14:26. doi: 10.3389/fnins.2020.00026

31. He X, Li T, Wang X. Research progress on the depth of anesthesia monitoring based on the electroencephalogram. Ibrain. 2024 Dec 6;11(1):32-43. doi: 10.1002/ibra.12186

32. Absalom AR, Sutcliffe N, Kenny GN. Closed-loop control of anesthesia using Bispectral index: performance assessment in patients undergoing major orthopedic surgery under combined general and regional anesthesia. Anesthesiology. 2002;96(1):67-73. DOI: 10.1097/00000542-200201000-00017

33. Ribba B, Bräm DS, Baverel PG, Peck RW. Model enhanced reinforcement learning to enable precision dosing: A theoretical case study with dosing of propofol. CPT Pharmacometrics Syst Pharmacol. 2022;11(11):1497-1510. DOI: 10.1002/psp4.12858

34. Tu Z, Jeffries S, Pelletier E, et al. Deep reinforcement learning for multi-targets propofol dosing. J Clin Monit Comput. 2025;39(3):613-623. DOI: 10.1007/s10877-025-01269-z

35. Malagutti N, McGinness G, Nithyanandam DA. Real-Time Personalised Pharmacokinetic-Pharmacodynamic Modelling in Propofol Anesthesia through Bayesian Inference. Annu Int Conf IEEE Eng Med Biol Soc. 2023. DOI: 10.1109/EMBC40787.2023.10339991

36. Viterbo JF, Lourenço AP, Leite-Moreira AF, et al. Prospective randomised comparison of Marsh and Schnider pharmacokinetic models for propofol during induction of anaesthesia. Eur J Anaesthesiol. 2012;29(10):477-83. DOI: 10.1097/EJA.0b013e3283542421

37. Hüppe T, Maurer F, Sessler DI, et al. Retrospective comparison of Eleveld, Marsh, and Schnider propofol pharmacokinetic models in 50 patients. Br J Anaesth. 2020;124(2):e22-e24. DOI: 10.1016/j.bja.2019.10.019

38. Eleveld DJ, Proost JH, Cortínez LI, et al. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118(6):1221-37. DOI: 10.1213/ANE.0000000000000165

39. Hall S, Ortmann L, Picallo M, Dörfler F. Real-time Projected Gradient-based Nonlinear Model Predictive Control with an Application to Anesthesia Control. IEEE CDC. 2022. DOI: 10.1109/CDC51059.2022.9992498.

40. Aubouin–Pairault B, Fiacchini M, Dang T. Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control. Computers & Chemical Engineering. 2024;191:108837. https://doi.org/10.1016/j.compchemeng.2024.108837

41. Cai X, Wang X, Zhu Y, et al. Advances in automated anesthesia: a comprehensive review. Anesthesiol Perioper Sci. 2025;3:3. https://doi.org/10.1007/s44254-024-00085-z

42. Khosravi S. Constrained model predictive control of hypnosis (Thesis). University of British Columbia. 2015. DOI:10.14288/1.0223114

43. Rezvanian S, Towhidkhah F, Ghahramani N. Increasing Robustness of the Anesthesia Process from Difference Patient's Delay Using a State-Space Model Predictive Controller. Procedia Engineering. 2011;15:928-932. https://doi.org/10.1016/j.proeng.2011.08.171

44. Parihar S, Shah P, Sekhar RA, Lagoo JY. Model Predictive Control and Its Role in Biomedical Therapeutic Automation: A Brief Review. Applied System Innovation. 2022. https://doi.org/10.3390/asi5060118

45. Pawłowski A, Schiavo M, Latronico N, et al. Event-based MPC for propofol administration in anesthesia. Comput Methods Programs Biomed. 2023;229:107289. DOI: 10.1016/j.cmpb.2022.107289

46. Puri GD, Mathew PJ, Biswas I, et al. A multicenter evaluation of a closed-loop anesthesia delivery system: a randomized controlled trial. Anesth Analg. 2016;122(1):106-114. DOI: 10.1213/ANE.0000000000000769

47. Puri GD, Kumar B, Aveek J. Closed-loop anaesthesia delivery system (CLADS) using bispectral index: a performance assessment study. Anaesth Intensive Care. 2007;35(3):357-362. DOI: 10.1177/0310057X0703500306

48. Struys MMRF, De Smet T, Versichelen LF, et al. Comparison of closed-loop controlled administration of propofol using Bispectral Index as the controlled variable versus "standard practice" controlled administration. Anesthesiology. 2001;95(1):6-17. DOI: 10.1097/00000542-200107000-00007

49. Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20(1):63-94. DOI: 10.1007/BF01143186

50. Chan MT, Cheng BC, Lee TM, Gin T. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol. 2013;25(1):33-42. DOI: 10.1097/ANA.0b013e3182712fba

51. Pasin L, Nardelli P, Pintaudi M, et al. Closed-Loop Delivery Systems Versus Manually Controlled Administration of Total IV Anesthesia: A Meta-analysis of Randomized Clinical Trials. Anesth Analg. 2017;124(2):456-464. DOI: 10.1213/ANE.0000000000001394

52. Sng BL, Tan HS, Sia AT. Closed-loop double-vasopressor automated system vs manual bolus vasopressor to treat hypotension during spinal anaesthesia for caesarean section: a randomised controlled trial. Anaesthesia. 2014;69(1):37-45. DOI: 10.1111/anae.12460

53. Liu N, Chazot T, Genty A, et al. Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control. Anesthesiology. 2006;104(4):686-95. DOI: 10.1097/00000542-200604000-00012

54. Wu B, Zhu W, Wang Q, et al. Efficacy and safety of ciprofol-remifentanil versus propofol-remifentanil during fiberoptic bronchoscopy: A prospective, randomized, double-blind, non-inferiority trial. Front Pharmacol. 2022;13:1091579. DOI: 10.3389/fphar.2022.1091579

55. Eleveld DJ, Colin P, Absalom AR, et al. Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br J Anaesth. 2018;120(5):942-959. DOI: 10.1016/j.bja.2018.01.018

56. Singaravelu S, Barclay P. Automated control of end-tidal inhalation anaesthetic concentration decreases agent consumption in comparison with manual control. Br J Anaesth. 2013;110(4):561-566. DOI: 10.1093/bja/aes464

57. Hemmerling TM, Taddei R. Robotic anesthesia - a vision for the future of anesthesia. Transl Med UniSa. 2011;1:1-14. PMID: 23905028

Quality in Sport

Downloads

  • PDF

Published

2026-02-03

How to Cite

1.
LICHOŃ, Jakub Michał, KUNA, Paweł Jan, KUNA, Wojciech, PIETRUCHA, Jakub Mateusz, TURCZYNOWSKI, Kamil Igor, GOŁDYN, Mateusz Józef and TURCZYNOWSKI, Konrad Olaf. Application of Machine Learning Algorithms in Automatic Anesthetic Drug Delivery Systems: A literature review. Quality in Sport. Online. 3 February 2026. Vol. 51, p. 68152. [Accessed 4 February 2026]. DOI 10.12775/QS.2026.51.68152.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 51 (2026)

Section

Medical Sciences

License

Copyright (c) 2026 Jakub Michał Lichoń, Paweł Jan Kuna, Wojciech Kuna, Jakub Mateusz Pietrucha, Kamil Igor Turczynowski, Mateusz Józef Gołdyn, Konrad Olaf Turczynowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 4
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

anesthetic drugs, machine learning, closed-loop system, artificial intelligence
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop