The Role of the Gut Microbiome in Exercise Physiology and Athletic Performance: A Review of Evidence
DOI:
https://doi.org/10.12775/QS.2026.50.68111Keywords
gut microbiome, exercise, athletic performance, short‑chain fatty acids, endurance training, resistance training, probiotics, prebiotics, athletes, gut–brain axisAbstract
Background
The human gut microbiome interacts with host metabolism, immunity, and neuroendocrine signaling. Evidence shows habitual exercise modulates microbial diversity and function, with athletes exhibiting distinct "athletic" profiles enriched in short-chain fatty acid (SCFA)–producing taxa and altered metabolism versus sedentary people.
Aim
Synthesize evidence on the bidirectional gut microbiome–exercise relationship, focusing on microbial links to exercise physiology, training adaptations, performance, and microbiome-targeted strategies for athlete health/performance.
Material and methods
Comprehensive review of Google Scholar, Scopus, PubMed for human/animal studies on: (1) exercise-induced microbiota changes; (2) microbiome–fitness/performance associations; (3) microbial metabolites (e.g., SCFAs, bile acids); (4) dietary/probiotic/prebiotic interventions in athletes/active individuals. Prioritized recent reviews, RCTs, longitudinal studies; no meta-analysis due to heterogeneity.
Results
Endurance exercise links to higher diversity, SCFA-producers, and carbohydrate/amino acid metabolism capacity; extreme training causes dysbiosis, permeability, inflammation. SCFAs mediate diet–microbiota–host effects on mitochondria, substrate use, insulin sensitivity; gut signals affect immunity, barrier, gut–brain axis. Fiber-rich diets, select probiotics/synbiotics reduce illness, GI issues, inflammation, and may boost endurance/recovery.
Conclusions
The gut microbiome represents a modifiable factor in exercise physiology and athletic performance. Well-periodized training combined with microbiome-supportive nutrition may promote metabolic efficiency, immune resilience, and psychological robustness, whereas chronic excessive training and suboptimal diets may have adverse effects. Further progress requires well-designed, sport- and sex-specific longitudinal studies integrating multi-omics approaches and standardized exercise and intervention protocols.
References
Cullen, J. M. A., Shahzad, S., & Dhillon, J. (2023). A systematic review on the effects of exercise on gut microbial diversity, taxonomic composition, and microbial metabolites: identifying research gaps and future directions. Frontiers in physiology, 14, 1292673. https://doi.org/10.3389/fphys.2023.1292673
Humińska-Lisowska, K., Zielińska, K. & Łabaj, P. P. (2025). Unique Athletic Gut Microbiomes and Their Role in Sports Performance: A Narrative Review. Journal of Human Kinetics, 99, 79–97. https://doi.org/10.5114/jhk/202642
Mach, N., & Fuster-Botella, D. (2017). Endurance exercise and gut microbiota: A review. Journal of sport and health science, 6(2), 179–197. https://doi.org/10.1016/j.jshs.2016.05.001
Cataldi, S., Poli, L., Şahin, F. N., Patti, A., Santacroce, L., Bianco, A., Greco, G., Ghinassi, B., Di Baldassarre, A., & Fischetti, F. (2022). The Effects of Physical Activity on the Gut Microbiota and the Gut-Brain Axis in Preclinical and Human Models: A Narrative Review. Nutrients, 14(16), 3293. https://doi.org/10.3390/nu14163293
Hughes, R. L., & Holscher, H. D. (2021). Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Advances in nutrition (Bethesda, Md.), 12(6), 2190–2215. https://doi.org/10.1093/advances/nmab077
Clauss, M., Gérard, P., Mosca, A., & Leclerc, M. (2021). Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Frontiers in nutrition, 8, 637010. https://doi.org/10.3389/fnut.2021.637010
Mohr, A. E., Jäger, R., Carpenter, K. C., Kerksick, C. M., Purpura, M., Townsend, J. R., West, N. P., Black, K., Gleeson, M., Pyne, D. B., Wells, S. D., Arent, S. M., Kreider, R. B., Campbell, B. I., Bannock, L., Scheiman, J., Wissent, C. J., Pane, M., Kalman, D. S., Pugh, J. N., … Antonio, J. (2020). The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 17(1), 24. https://doi.org/10.1186/s12970-020-00353-w
Moitinho-Silva, L., Wegener, M., May, S., Schrinner, F., Akhtar, A., Boysen, T. J., Schaeffer, E., Hansen, C., Schmidt, T., Rühlemann, M. C., Hübenthal, M., Rausch, P., Kondakci, M. T., Maetzler, W., Weidinger, S., Laudes, M., Süß, P., Schulte, D., Junker, R., Sommer, F., … Franke, A. (2021). Short-term physical exercise impacts on the human holobiont obtained by a randomised intervention study. BMC microbiology, 21(1), 162. https://doi.org/10.1186/s12866-021-02214-1
Martin, D., Bonneau, M., Orfila, L., Horeau, M., Hazon, M., Demay, R., Lecommandeur, E., Boumpoutou, R., Guillotel, A., Guillemot, P., Croyal, M., Cressard, P., Cressard, C., Cuzol, A., Monbet, V., & Derbré, F. (2025). Atypical gut microbial ecosystem from athletes with very high exercise capacity improves insulin sensitivity and muscle glycogen store in mice. Cell reports, 44(4), 115448. https://doi.org/10.1016/j.celrep.2025.115448
Campbell, S. C., Wisniewski, P. J., Noji, M., McGuinness, L. R., Häggblom, M. M., Lightfoot, S. A., Joseph, L. B., & Kerkhof, L. J. (2016). The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PloS one, 11(3), e0150502. https://doi.org/10.1371/journal.pone.0150502
Queipo-Ortuño, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M., Cardona, F., Casanueva, F., & Tinahones, F. J. (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS one, 8(5), e65465. https://doi.org/10.1371/journal.pone.0065465
Wegierska, A. E., Charitos, I. A., Topi, S., Potenza, M. A., Montagnani, M., & Santacroce, L. (2022). The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports medicine (Auckland, N.Z.), 52(10), 2355–2369. https://doi.org/10.1007/s40279-022-01696-x
Dziewiecka, H., Buttar, H. S., Kasperska, A., Ostapiuk-Karolczuk, J., Domagalska, M., Cichoń, J., & Skarpańska-Stejnborn, A. (2022). Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC sports science, medicine & rehabilitation, 14(1), 122. https://doi.org/10.1186/s13102-022-00513-2
Morishima, S., Aoi, W., Kawamura, A., Kawase, T., Takagi, T., Naito, Y., Tsukahara, T., & Inoue, R. (2021). Intensive, prolonged exercise seemingly causes gut dysbiosis in female endurance runners. Journal of clinical biochemistry and nutrition, 68(3), 253–258. https://doi.org/10.3164/jcbn.20-131
Keohane, D. M., Woods, T., O'Connor, P., Underwood, S., Cronin, O., Whiston, R., O'Sullivan, O., Cotter, P., Shanahan, F., & Molloy, M. G. M. (2019). Four men in a boat: Ultra-endurance exercise alters the gut microbiome. Journal of science and medicine in sport, 22(9), 1059–1064. https://doi.org/10.1016/j.jsams.2019.04.004
Varghese, S., Rao, S., Khattak, A., Zamir, F., & Chaari, A. (2024). Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients, 16(21), 3663. https://doi.org/10.3390/nu16213663
Patel, B. K., Patel, K. H., Lee, C. N., & Moochhala, S. (2024). Intestinal Microbiota Interventions to Enhance Athletic Performance-A Review. International journal of molecular sciences, 25(18), 10076. https://doi.org/10.3390/ijms251810076
Kern, T., Blond, M. B., Hansen, T. H., Rosenkilde, M., Quist, J. S., Gram, A. S., Ekstrøm, C. T., Hansen, T., & Stallknecht, B. (2020). Structured exercise alters the gut microbiota in humans with overweight and obesity-A randomized controlled trial. International journal of obesity (2005), 44(1), 125–135. https://doi.org/10.1038/s41366-019-0440-y
Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., O'Reilly, M., Jeffery, I. B., Wood-Martin, R., Kerins, D. M., Quigley, E., Ross, R. P., O'Toole, P. W., Molloy, M. G., Falvey, E., Shanahan, F., & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913–1920. https://doi.org/10.1136/gutjnl-2013-306541
Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., Shanahan, F., Cotter, P. D., & O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 67(4), 625–633. https://doi.org/10.1136/gutjnl-2016-313627
Deng, R., Wang, M., Song, Y., & Shi, Y. (2023). A Bibliometric Analysis on the Research Trend of Exercise and the Gut Microbiome. Microorganisms, 11(4), 903. https://doi.org/10.3390/microorganisms11040903
Han, M., Yang, K., Yang, P., Zhong, C., Chen, C., Wang, S., Lu, Q., & Ning, K. (2020). Stratification of athletes' gut microbiota: the multifaceted hubs associated with dietary factors, physical characteristics and performance. Gut microbes, 12(1), 1–18. https://doi.org/10.1080/19490976.2020.1842991
Munukka, E., Ahtiainen, J. P., Puigbó, P., Jalkanen, S., Pahkala, K., Keskitalo, A., Kujala, U. M., Pietilä, S., Hollmén, M., Elo, L., Huovinen, P., D'Auria, G., & Pekkala, S. (2018). Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Frontiers in microbiology, 9, 2323. https://doi.org/10.3389/fmicb.2018.02323
Estaki, M., Pither, J., Baumeister, P., Little, J. P., Gill, S. K., Ghosh, S., Ahmadi-Vand, Z., Marsden, K. R., & Gibson, D. L. (2016). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome, 4(1), 42. https://doi.org/10.1186/s40168-016-0189-7
Bressa, C., Bailén-Andrino, M., Pérez-Santiago, J., González-Soltero, R., Pérez, M., Montalvo-Lominchar, M. G., Maté-Muñoz, J. L., Domínguez, R., Moreno, D., & Larrosa, M. (2017). Differences in gut microbiota profile between women with active lifestyle and sedentary women. PloS one, 12(2), e0171352. https://doi.org/10.1371/journal.pone.0171352
Yang, Y., Shi, Y., Wiklund, P., Tan, X., Wu, N., Zhang, X., Tikkanen, O., Zhang, C., Munukka, E., & Cheng, S. (2017). The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients, 9(8), 792. https://doi.org/10.3390/nu9080792
Allen, J. M., Mailing, L. J., Niemiro, G. M., Moore, R., Cook, M. D., White, B. A., Holscher, H. D., & Woods, J. A. (2018). Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Medicine and science in sports and exercise, 50(4), 747–757. https://doi.org/10.1249/MSS.0000000000001495
Taniguchi, H., Tanisawa, K., Sun, X., Kubo, T., Hoshino, Y., Hosokawa, M., Takeyama, H., & Higuchi, M. (2018). Effects of short-term endurance exercise on gut microbiota in elderly men. Physiological reports, 6(23), e13935. https://doi.org/10.14814/phy2.13935
Resende, A. S., Leite, G. S. F., & Lancha Junior, A. H. (2021). Changes in the Gut Bacteria Composition of Healthy Men with the Same Nutritional Profile Undergoing 10-Week Aerobic Exercise Training: A Randomized Controlled Trial. Nutrients, 13(8), 2839. https://doi.org/10.3390/nu13082839
Erlandson, K. M., Liu, J., Johnson, R., Dillon, S., Jankowski, C. M., Kroehl, M., Robertson, C. E., Frank, D. N., Tuncil, Y., Higgins, J., Hamaker, B., & Wilson, C. C. (2021). An exercise intervention alters stool microbiota and metabolites among older, sedentary adults. Therapeutic advances in infectious disease, 8, 20499361211027067. https://doi.org/10.1177/20499361211027067
Zhong, F., Wen, X., Yang, M., Lai, H. Y., Momma, H., Cheng, L., Sun, X., Nagatomi, R., & Huang, C. (2021). Effect of an 8-week Exercise Training on Gut Microbiota in Physically Inactive Older Women. International journal of sports medicine, 42(7), 610–623. https://doi.org/10.1055/a-1301-7011
Bycura, D., Santos, A. C., Shiffer, A., Kyman, S., Winfree, K., Sutliffe, J., Pearson, T., Sonderegger, D., Cope, E., & Caporaso, J. G. (2021). Impact of Different Exercise Modalities on the Human Gut Microbiome. Sports (Basel, Switzerland), 9(2), 14. https://doi.org/10.3390/sports9020014
Wagner, A., Kapounková, K., & Struhár, I. (2024). The relationship between the gut microbiome and resistance training: a rapid review. BMC sports science, medicine & rehabilitation, 16(1), 4. https://doi.org/10.1186/s13102-023-00791-4
Rettedal, E. A., Cree, J. M. E., Adams, S. E., MacRae, C., Skidmore, P. M. L., Cameron-Smith, D., Gant, N., Blenkiron, C., & Merry, T. L. (2020). Short-term high-intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Experimental physiology, 105(8), 1268–1279. https://doi.org/10.1113/EP088744
Bielik, V., Hric, I., Ugrayová, S., Kubáňová, L., Putala, M., Grznár, Ľ., Penesová, A., Havranová, A., Šardzíková, S., Grendar, M., Baranovičová, E., Šoltys, K., & Kolisek, M. (2022). Effect of High-intensity Training and Probiotics on Gut Microbiota Diversity in Competitive Swimmers: Randomized Controlled Trial. Sports medicine - open, 8(1), 64. https://doi.org/10.1186/s40798-022-00453-8
Mohr, A. E., Mach, N., Pugh, J., Grosicki, G. J., Allen, J. M., Karl, J. P., & Whisner, C. M. (2025). Mechanisms underlying alterations of the gut microbiota by exercise and their role in shaping ecological resilience. FEMS microbiology reviews, 49, fuaf037. https://doi.org/10.1093/femsre/fuaf037
Kulecka, M., Fraczek, B., Mikula, M., Zeber-Lubecka, N., Karczmarski, J., Paziewska, A., Ambrozkiewicz, F., Jagusztyn-Krynicka, K., Cieszczyk, P., & Ostrowski, J. (2020). The composition and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary controls. Gut microbes, 11(5), 1374–1384. https://doi.org/10.1080/19490976.2020.1758009
Humińska-Lisowska, K., Michałowska-Sawczyn, M., Kosciolek, T., Łabaj, P. P., Kochanowicz, A., Mieszkowski, J., Proia, P., Cięszczyk, P., & Zielińska, K. (2025). Gut microbiome and blood biomarkers reveal differential responses to aerobic and anaerobic exercise in collegiate men of diverse training backgrounds. Scientific reports, 15(1), 16061. https://doi.org/10.1038/s41598-025-99485-9
O'Donovan, C. M., Madigan, S. M., Garcia-Perez, I., Rankin, A., O' Sullivan, O., & Cotter, P. D. (2020). Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes. Journal of science and medicine in sport, 23(1), 63–68. https://doi.org/10.1016/j.jsams.2019.08.290
Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L. D., Wibowo, M. C., Wurth, R. C., Punthambaker, S., Tierney, B. T., Yang, Z., Hattab, M. W., Avila-Pacheco, J., Clish, C. B., Lessard, S., Church, G. M., & Kostic, A. D. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature medicine, 25(7), 1104–1109. https://doi.org/10.1038/s41591-019-0485-4
Grosicki, G. J., Durk, R. P., & Bagley, J. R. (2019). Rapid gut microbiome changes in a world-class ultramarathon runner. Physiological reports, 7(24), e14313. https://doi.org/10.14814/phy2.14313
Jang, L. G., Choi, G., Kim, S. W., Kim, B. Y., Lee, S., & Park, H. (2019). The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. Journal of the International Society of Sports Nutrition, 16(1), 21. https://doi.org/10.1186/s12970-019-0290-y
Miranda-Comas, G., Petering, R. C., Zaman, N., & Chang, R. (2022). Implications of the Gut Microbiome in Sports. Sports health, 14(6), 894–898. https://doi.org/10.1177/19417381211060006
Urban, S., Chmura, O., Wątor, J., Panek, P., & Zapała, B. (2024). The intensive physical activity causes changes in the composition of gut and oral microbiota. Scientific reports, 14(1), 20858. https://doi.org/10.1038/s41598-024-71684-w
Nazari, H., Meibodi, A. E., Bassami, M., Olfatifar, M., & Yadegar, A. (2025). Association of Gut Microbiota With Performance Level Among Iranian Professional and Semi-Professional Runners: A Cross-Sectional Study. Health science reports, 8(10), e71319. https://doi.org/10.1002/hsr2.71319
Furber, M. J. W., Young, G. R., Holt, G. S., Pyle, S., Davison, G., Roberts, M. G., Roberts, J. D., Howatson, G., & Smith, D. L. (2022). Gut Microbial Stability is Associated with Greater Endurance Performance in Athletes Undertaking Dietary Periodization. mSystems, 7(3), e0012922. https://doi.org/10.1128/msystems.00129-22
Liu, Y., Wang, Y., Ni, Y., Cheung, C. K. Y., Lam, K. S. L., Wang, Y., Xia, Z., Ye, D., Guo, J., Tse, M. A., Panagiotou, G., & Xu, A. (2020). Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention. Cell metabolism, 31(1), 77–91.e5. https://doi.org/10.1016/j.cmet.2019.11.001
Czarnota, M., Ossowska, W., & Ösztreicher , W. (2025). Gut Microbiota Modulation to Enhance Exercise Performance and Recovery - Systematic Review. Quality in Sport, 43, 62420. https://doi.org/10.12775/QS.2025.43.62420
O'Brien, M. T., O'Sullivan, O., Claesson, M. J., & Cotter, P. D. (2022). The Athlete Gut Microbiome and its Relevance to Health and Performance: A Review. Sports medicine (Auckland, N.Z.), 52(Suppl 1), 119–128. https://doi.org/10.1007/s40279-022-01785-x
Morita, E., Yokoyama, H., Imai, D., Takeda, R., Ota, A., Kawai, E., Hisada, T., Emoto, M., Suzuki, Y., & Okazaki, K. (2019). Aerobic Exercise Training with Brisk Walking Increases Intestinal Bacteroides in Healthy Elderly Women. Nutrients, 11(4), 868. https://doi.org/10.3390/nu11040868
Clark, A., & Mach, N. (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 13, 43. https://doi.org/10.1186/s12970-016-0155-6
Quiroga, R., Nistal, E., Estébanez, B., Porras, D., Juárez-Fernández, M., Martínez-Flórez, S., García-Mediavilla, M. V., de Paz, J. A., González-Gallego, J., Sánchez-Campos, S., & Cuevas, M. J. (2020). Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Experimental & molecular medicine, 52(7), 1048–1061. https://doi.org/10.1038/s12276-020-0459-0
Motiani, K. K., Collado, M. C., Eskelinen, J. J., Virtanen, K. A., Löyttyniemi, E., Salminen, S., Nuutila, P., Kalliokoski, K. K., & Hannukainen, J. C. (2020). Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Medicine and science in sports and exercise, 52(1), 94–104. https://doi.org/10.1249/MSS.0000000000002112
Verheggen, R. J. H. M., Konstanti, P., Smidt, H., Hermus, A. R. M. M., Thijssen, D. H. J., & Hopman, M. T. E. (2021). Eight-week exercise training in humans with obesity: Marked improvements in insulin sensitivity and modest changes in gut microbiome. Obesity (Silver Spring, Md.), 29(10), 1615–1624. https://doi.org/10.1002/oby.23252
Carlone, J., Parisi, A., & Fasano, A. (2025). The performance gut: a key to optimizing performance in high-level athletes: a systematic scoping review. Frontiers in sports and active living, 7, 1641923. https://doi.org/10.3389/fspor.2025.1641923
Heimer, M., Teschler, M., Schmitz, B., & Mooren, F. C. (2022). Corrigendum: Health benefits of probiotics in sport and exercise-Non-existent or a matter of heterogeneity? A systematic review. Frontiers in nutrition, 9, 1051918. https://doi.org/10.3389/fnut.2022.1051918
Jarrett, H., Medlin, S., & Morehen, J. C. (2025). The Role of the Gut Microbiome and Probiotics in Sports Performance: A Narrative Review Update. Nutrients, 17(4), 690. https://doi.org/10.3390/nu17040690
Chen, Y., Yang, K., Xu, M., Zhang, Y., Weng, X., Luo, J., Li, Y., & Mao, Y. H. (2024). Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients, 16(11), 1634. https://doi.org/10.3390/nu16111634
Rhee, S. H., Pothoulakis, C., & Mayer, E. A. (2009). Principles and clinical implications of the brain-gut-enteric microbiota axis. Nature reviews. Gastroenterology & hepatology, 6(5), 306–314. https://doi.org/10.1038/nrgastro.2009.35
Eisenstein M. (2016). Microbiome: Bacterial broadband. Nature, 533(7603), S104–S106. https://doi.org/10.1038/533S104a
Lamoureux, E. V., Grandy, S. A., & Langille, M. G. I. (2017). Moderate Exercise Has Limited but Distinguishable Effects on the Mouse Microbiome. mSystems, 2(4), e00006-17. https://doi.org/10.1128/mSystems.00006-17
Murtaza, N., Burke, L. M., Vlahovich, N., Charlesson, B., O' Neill, H., Ross, M. L., Campbell, K. L., Krause, L., & Morrison, M. (2019). The Effects of Dietary Pattern during Intensified Training on Stool Microbiota of Elite Race Walkers. Nutrients, 11(2), 261. https://doi.org/10.3390/nu11020261
Wang, Y., Chen, J., Ni, Y., Liu, Y., Gao, X., Tse, M. A., Panagiotou, G., & Xu, A. (2024). Exercise-changed gut mycobiome as a potential contributor to metabolic benefits in diabetes prevention: an integrative multi-omics study. Gut microbes, 16(1), 2416928. https://doi.org/10.1080/19490976.2024.2416928
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Paweł Pustuła, Wiktoria Michnowska, Patryk Hebda, Mieszko Czapliński, Natalia Bruska, Bartłomiej Błaszkowski, Andrii Bilyk, Adam Wolski, Mateusz Kubicki, Katarzyna Więckowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 4
Number of citations: 0