The use of machine learning methods in the diagnosis of depression - a systematic review
DOI:
https://doi.org/10.12775/QS.2026.50.68033Keywords
depression, diagnostics, machine learning, artificial intelligenceAbstract
Introduction: Nowadays, depression is one of the most common illnesses, affecting over 300 million people worldwide. Over the course of a lifetime, several dozen percent of the adult population of various ages and backgrounds will experience it. Depression is a debilitating disorder characterized by low mood, reduced interests, impaired cognitive functions, and vegetative symptoms such as sleep or appetite disturbances. According to the World Health Organization (WHO), it is the leading cause of disability and has a significant impact on quality of life, both privately and professionally. Its symptoms are heterogeneous and often overlap with other disorders, which means that this illness is not always accurately diagnosed. To assist physicians, in recent years researchers in this field have developed numerous machine learning methods aimed at improving the diagnostic and treatment process of this condition.
Aim of the study: The aim of this study is to summarize the current state of knowledge on the use of machine learning methods in the diagnosis of depression.
Methods and materials: A literature review was conducted using the PubMed database with relevant search terms.
Results: Articles describing studies that applied machine learning methods to predict and identify depression were included in the review. The machine learning models in these studies used data derived from neuroimaging, electronic health records (EHR), and peripheral blood transcriptomes.
Conclusion: Our review suggests that machine learning has great potential in the diagnosis of depression. This area of artificial intelligence offers new ways to analyze data and automate diagnostic processes. In the future, machine learning algorithms may become an integral part of standard psychiatric diagnostics.
References
1. Taylor B, Hobensack M, Niño de Rivera S, Zhao Y, Masterson Creber R, Cato K. Identifying Depression Through Machine Learning Analysis of Omics Data: Scoping Review. JMIR Nurs. 2024 Jul 19;7:e54810. doi: 10.2196/54810. PMID: 39028994; PMCID: PMC11297379.
2. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF. Major depressive disorder. Nat Rev Dis Primers. 2016 Sep 15;2:16065. doi: 10.1038/nrdp.2016.65. PMID: 27629598.
3. Liu Q, He H, Yang J, Feng X, Zhao F, Lyu J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J Psychiatr Res. 2020 Jul;126:134-140. doi: 10.1016/j.jpsychires.2019.08.002. Epub 2019 Aug 10. PMID: 31439359.
4. Li X, Zhang X, Zhu J, Mao W, Sun S, Wang Z, Xia C, Hu B. Depression recognition using machine learning methods with different feature generation strategies. Artif Intell Med. 2019 Aug;99:101696. doi: 10.1016/j.artmed.2019.07.004. Epub 2019 Jul 17. PMID: 31606115.
5. Khadidos AO, Alyoubi KH, Mahato S, Khadidos AO, Nandan Mohanty S. Machine Learning and Electroencephalogram Signal based Diagnosis of Dipression. Neurosci Lett. 2023 Jul 13;809:137313. doi: 10.1016/j.neulet.2023.137313. Epub 2023 May 29. PMID: 37257682.
6. Bhadra S, Kumar CJ. An insight into diagnosis of depression using machine learning techniques: a systematic review. Curr Med Res Opin. 2022 May;38(5):749-771. doi: 10.1080/03007995.2022.2038487. Epub 2022 Feb 17. PMID: 35129401.
7. Nickson D, Meyer C, Walasek L, Toro C. Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review. BMC Med Inform Decis Mak. 2023 Nov 27;23(1):271. doi: 10.1186/s12911-023-02341-x. PMID: 38012655; PMCID: PMC10680172.
8. Walther A, Cannistraci CV, Simons K, Durán C, Gerl MJ, Wehrli S, et al. Lipidomics in major depressive disorder. Front Psychiatry. Oct 15, 2018;9:459. [FREE Full text] [doi: 10.3389/fpsyt.2018.00459] [Medline: 30374314]
9. Patel MJ, Khalaf A, Aizenstein HJ. Studying depression using imaging and machine learning methods. Neuroimage Clin. 2015 Nov 10;10:115-23. doi: 10.1016/j.nicl.2015.11.003. PMID: 26759786; PMCID: PMC4683422.
10. Tomasik J, Han SY, Barton-Owen G, Mirea D, Martin-Key NA, Rustogi N, et al. A machine learning algorithm to differentiate bipolar disorder from major depressive disorder using an online mental health questionnaire and blood biomarker data. Transl Psychiatry. Jan 12, 2021;11(1):41. [FREE Full text] [doi: 10.1038/s41398-020-01181-x] [Medline: 33436544]
11. Bhak Y, Jeong HO, Cho YS, Jeon S, Cho J, Gim J, et al. Depression and suicide risk prediction models using blood-derived multi-omics data. Transl Psychiatry. Oct 17, 2019;9(1):262. [FREE Full text] [doi: 10.1038/s41398-019-0595-2] [Medline: 31624227]
12. Chao YS, Lin KF, Wu CJ, Wu HC, Hsu HT, Tsao LC, et al. Simulation study to demonstrate biases created by diagnostic criteria of mental illnesses: major depressive episodes, dysthymia, and manic episodes. BMJ Open. Nov 10, 2020;10(11):e037022. [FREE Full text] [doi: 10.1136/bmjopen-2020-037022] [Medline: 33172939]
13. Zhao S, Bao Z, Zhao X, Xu M, Li MD, Yang Z. Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods. Front Neurosci. 2021 Jun 18;15:645998. doi: 10.3389/fnins.2021.645998. PMID: 34220416; PMCID: PMC8249859.
14. Colledani D, Anselmi P, Robusto E. Machine learning-decision tree classifiers in psychiatric assessment: An application to the diagnosis of major depressive disorder. Psychiatry Res. 2023 Apr;322:115127. doi: 10.1016/j.psychres.2023.115127. Epub 2023 Feb 22. PMID: 36842398.
15. Gao S, Calhoun VD, Sui J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci Ther. 2018 Nov;24(11):1037-1052. doi: 10.1111/cns.13048. Epub 2018 Aug 23. PMID: 30136381; PMCID: PMC6324186.
16. Yoshida K, Shimizu Y, Yoshimoto J, Takamura M, Okada G, Okamoto Y, Yamawaki S, Doya K. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression. PLoS One. 2017 Jul 12;12(7):e0179638. doi: 10.1371/journal.pone.0179638. PMID: 28700672; PMCID: PMC5507488.
17. Zhong X, Shi H, Ming Q, Dong D, Zhang X, Zeng LL, Yao S. Whole-brain resting-state functional connectivity identified major depressive disorder: A multivariate pattern analysis in two independent samples. J Affect Disord. 2017 Aug 15;218:346-352. doi: 10.1016/j.jad.2017.04.040. Epub 2017 Apr 21. PMID: 28499208.
18. Wang X, Ren Y, Zhang W. Depression Disorder Classification of fMRI Data Using Sparse Low-Rank Functional Brain Network and Graph-Based Features. Comput Math Methods Med. 2017;2017:3609821. doi: 10.1155/2017/3609821. Epub 2017 Apr 12. PMID: 28487746; PMCID: PMC5405576.
19. Schnyer DM, Clasen PC, Gonzalez C, Beevers CG. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res Neuroimaging. 2017 Jun 30;264:1-9. doi: 10.1016/j.pscychresns.2017.03.003. Epub 2017 Mar 23. PMID: 28388468; PMCID: PMC5486995.
20. Sundermann B, Feder S, Wersching H, Teuber A, Schwindt W, Kugel H, Heindel W, Arolt V, Berger K, Pfleiderer B. Diagnostic classification of unipolar depression based on resting-state functional connectivity MRI: effects of generalization to a diverse sample. J Neural Transm (Vienna). 2017 May;124(5):589-605. doi: 10.1007/s00702-016-1673-8. Epub 2016 Dec 31. PMID: 28040847.
21. Bhaumik R, Jenkins LM, Gowins JR, Jacobs RH, Barba A, Bhaumik DK, Langenecker SA. Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity. Neuroimage Clin. 2016 Mar 2;16:390-398. doi: 10.1016/j.nicl.2016.02.018. PMID: 28861340; PMCID: PMC5570580.
22. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A, Schatzberg AF, Sudheimer K, Keller J, Mayberg HS, Gunning FM, Alexopoulos GS, Fox MD, Pascual-Leone A, Voss HU, Casey BJ, Dubin MJ, Liston C. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017 Jan;23(1):28-38. doi: 10.1038/nm.4246. Epub 2016 Dec 5. Erratum in: Nat Med. 2017 Feb 7;23(2):264. doi: 10.1038/nm0217-264d. PMID: 27918562; PMCID: PMC5624035.
23. Sankar A, Zhang T, Gaonkar B, Doshi J, Erus G, Costafreda SG, Marangell L, Davatzikos C, Fu CH. Diagnostic potential of structural neuroimaging for depression from a multi-ethnic community sample. BJPsych Open. 2016 Jul 1;2(4):247-254. doi: 10.1192/bjpo.bp.115.002493. PMID: 27703783; PMCID: PMC4995169.
24. Ramasubbu R, Brown MR, Cortese F, Gaxiola I, Goodyear B, Greenshaw AJ, Dursun SM, Greiner R. Accuracy of automated classification of major depressive disorder as a function of symptom severity. Neuroimage Clin. 2016 Jul 27;12:320-31. doi: 10.1016/j.nicl.2016.07.012. PMID: 27551669; PMCID: PMC4983635.
25. Yang W, Chen Q, Liu P, Cheng H, Cui Q, Wei D, Zhang Q, Qiu J. Abnormal brain activation during directed forgetting of negative memory in depressed patients. J Affect Disord. 2016 Jan 15;190:880-888. doi: 10.1016/j.jad.2015.05.034. PMID: 26639452.
26. Kroenke K. PHQ-9: global uptake of a depression scale. World Psychiatry. 2021 Feb;20(1):135-136. doi: 10.1002/wps.20821. PMID: 33432739; PMCID: PMC7801833.
27. Nichols L, Ryan R, Connor C, Birchwood M, Marshall T. Derivation of a prediction model for a diagnosis of depression in young adults: a matched case-control study using electronic primary care records. Early Interv Psychiatry. 2018 Jun;12(3):444-455. doi: 10.1111/eip.12332. Epub 2016 Mar 30. PMID: 27027490.
28. Qi B, Fiori LM, Turecki G, Trakadis YJ. Machine Learning Analysis of Blood microRNA Data in Major Depression: A Case-Control Study for Biomarker Discovery. Int J Neuropsychopharmacol. 2020 Nov 26;23(8):505-510. doi: 10.1093/ijnp/pyaa029. PMID: 32365192; PMCID: PMC7689198.
29. Dwyer DB, Falkai P, Koutsouleris N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annu Rev Clin Psychol. 2018 May 7;14:91-118. doi: 10.1146/annurev-clinpsy-032816-045037. Epub 2018 Jan 29. PMID: 29401044.
30. Zhao X, Kang J, Svetnik V, Warden D, Wilcock G, David Smith A, Savage MJ, Laterza OF. A Machine Learning Approach to Identify a Circulating MicroRNA Signature for Alzheimer Disease. J Appl Lab Med. 2020 Jan 1;5(1):15-28. doi: 10.1373/jalm.2019.029595. PMID: 31811079.
31. Trakadis YJ, Sardaar S, Chen A, Fulginiti V, Krishnan A. Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes. Am J Med Genet B Neuropsychiatr Genet. 2019 Mar;180(2):103-112. doi: 10.1002/ajmg.b.32638. Epub 2018 Apr 28. PMID: 29704323.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Aleksandra Jędrzejewska, Maria Kasprzak, Aleksandra Jureczko, Klaudia Kleczaj, Julia Jaworowska, Valentyna Levadna, Damian Osiński, Zuzanna Kawa, Gabriela Babiarz, Julia Kanarszczuk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 4
Number of citations: 0