Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Pathophysiology of Decompression Sickness: Current Insights and Emerging Models
  • Home
  • /
  • Pathophysiology of Decompression Sickness: Current Insights and Emerging Models
  1. Home /
  2. Archives /
  3. Vol. 49 (2026) /
  4. Medical Sciences

Pathophysiology of Decompression Sickness: Current Insights and Emerging Models

Authors

  • Jakub Miarczyński CM UMK https://orcid.org/0009-0004-5746-4786
  • Szymon Górski https://orcid.org/0009-0006-1411-6524
  • Joanna Okupniarek https://orcid.org/0009-0007-2446-4810
  • Michalina Bartosik https://orcid.org/0009-0008-8541-1998
  • Igor Jętasiewicz https://orcid.org/0009-0008-3351-6392
  • Michał Oborski https://orcid.org/0009-0009-6170-6756
  • Krzysztof Oborski https://orcid.org/0009-0004-4366-6897
  • Katarzyna Barczyńska https://orcid.org/0009-0005-1199-0980

DOI:

https://doi.org/10.12775/QS.2026.49.67991

Keywords

decompression sickness, Decompression illness, Hyperbaric physiology, Inert gas bubbles, Endothelial dysfunction, Microparticles, Nitric oxide, Inflammation, Microcirculation, Diving medicine

Abstract

Introduction: Decompression sickness (DCS), commonly known as “the bends,” is a clinical disorder caused by the formation of gas bubbles within tissues or the bloodstream as a result of inert gas supersaturation during or following a decrease in ambient pressure. It most often occurs in the setting of compressed-gas diving, work in pressurized environments such as caissons, or rapid decompression to high altitude, including situations involving reduced cabin pressure or extravehicular activity (EVA) in space suits. DCS may also develop after relatively modest pressure reductions, such as commercial air travel undertaken shortly after scuba diving. Clinical manifestations vary widely, ranging from musculoskeletal pain, lymphedema, and cutaneous rashes to severe neurological deficits and cardiorespiratory collapse. Initial evaluation should include a detailed history of recent diving or altitude exposure, the timing of symptom onset, and a thorough neurological examination. Immediate management consists of high-flow oxygen administration and appropriate fluid resuscitation, either orally or intravenously. Definitive treatment involves hyperbaric oxygen therapy. Although residual symptoms may persist in severe cases, prompt and appropriate treatment generally leads to a favorable outcome.

References

1 Eftedal O, Lydersen S, Brubakk AO. The relationship between venous gas bubbles and adverse effects of decompression after air dives. Undersea Hyperb Med. 2007;34:99-105.

2 Ljubkovic M, et al. Venous and arterial bubbles at rest after no-decompression air dives. Med Sci Sports Exerc. 2011;43:990-995.

3 Eftedal I, et al. Acute and potentially persistent effects of scuba diving on the blood transcriptome of experienced divers. Physiol Genomics. 2013;45:965-972.

4 Ljubkovic M, et al. High incidence of venous and arterial gas emboli at rest after trimix diving without protocol violations. J Appl Physiol. 2010;109:1670-1674.

5 Madden D, et al. Exercise before SCUBA diving ameliorates decompression-induced neutrophil activation. Med Sci Sports Exerc. 2014;46:1928-1935.

6 Thom SR, et al. Microparticle production, neutrophil activation and intravascular bubbles following open-water SCUBA diving. J Appl Physiol. 2012;112:1268-1278.

7 Thom SR, et al. Bubbles, microparticles and neutrophil activation: Changes with exercise level and breathing gas during open-water SCUBA diving. J Appl Physiol. 2013;114:1396-1405.

8 Pontier JM, Gemp F, Ignatescu M. Blood platelet-derived microparticles release and bubble formation after an open-sea dive. Appl Physiol Nutr Metab. 2012;37:1-5.

9 Madden D, et al. High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation. Eur J Appl Physiol. 2014;114:1955-1961.

10 Thom SR, Bhopale VM, Yu K, Yang M. Provocative decompression causes diffuse vascular injury in mice mediated by microparticles containing interleukin-1β. J Appl Physiol. 2018;125:1339-1348.

11 Thom SR, et al. Association of microparticles and neutrophil activation with decompression sickness. J Appl Physiol. 2015;119:427-434.

12 Brett KD, et al. Microparticle and interleukin-1β production with human simulated compressed air diving. Sci Rep. 2019;9:13320.

13 Mahon RT, Regis DP. Decompression and Decompression Sickness. Compr Physiol. 2014;4:1157-1175.

14 Mitchell SJ, Bennett MH, Moon RE. Decompression Sickness and Arterial Gas Embolism. N Engl J Med. 2022;386:1254-1264.

15 Vann RD, Freiberger JJ, Caruso JL, et al. Report on decompression illness, diving fatalities, and project dive exploration. Durham, NC: Divers Alert Network, 2003:42.

16 Haas RM, Hannam JA, Sames C, et al. Decompression illness in divers treated in Auckland, New Zealand, 1996–2012. Diving Hyperb Med. 2014;44:20-5.

17 Saadi A, Ferenczi EA, Reda H. Spinal decompression sickness in an experienced scuba diver: a case report and review of literature. Neurohospitalist. 2019;9:235-8.

18 Lindfors OH, Raisanen-Sokolowski AK, Hirvonen TP, Sinkkonen ST. Inner ear barotrauma and inner ear decompression sickness: a systematic review on differential diagnostics. Diving Hyperb Med. 2021;51:328-37.

19 Berghage TE. Decompression sickness during saturation dives. Undersea Biomed Res. 1976;3:387-98.

20 Xu W, Liu W, Huang G, Zou Z, Cai Z, Xu W. Decompression illness: clinical aspects of 5278 consecutive cases treated in a single hyperbaric unit. PLoS One. 2012;7(11):e50079.

21 St Leger Dowse M, Howell S, Smerdon GR. Flying after diving: a questionnaire-based evaluation of pre-flight diving behaviour in a recreational diving cohort. Diving Hyperb Med. 2021;51:361-7.

22 Brett KD, et al. Microparticle and interleukin-1β production with human simulated compressed air diving. Sci Rep. 2019;9:13320.

23 Hatling D, Hogset A, Guttormsen AB, Muller B. Iatrogenic cerebral gas embolism — a systematic review of case reports. Acta Anaesthesiol Scand. 2019;63:154-60.

24 Blatteau JE, Morin J, Roffi R, Druelle A, Shardella F, Castagna O. Clinical problem solving: mental confusion and hypoxemia after scuba diving. Diving Hyperb Med. 2020;50:181-4.

25 Boycott AE, Damant GCC, Haldane JS. The prevention of compressed-air illness. J Hyg (Lond). 1908;8:342-443.

26 Vann RD, Butler FK, Mitchell SJ, Moon RE. Decompression illness. Lancet. 2011;377:153-64.

27 Blatteau JE, Souday V, Gempp E, et al. Gas nuclei, their origin, and their role in bubble formation. Aviat Space Environ Med. 2006;77(10):1068-76.

28 Harvey EN. Decompression Sickness. Caisson Sickness, Diver's and Flier's Bends and Related Syndromes. Philadelphia: WB Saunders; 1951.

29 Hills BA. Supersaturation by counterperfusion and diffusion. Undersea Biomed Res. 1978;5(2):169-85.

30 Arieli R, Arieli Y, Marx A. Hyperbaric oxygen may reduce gas bubbles in decompressed prawns by eliminating gas nuclei. J Appl Physiol. 2002;92(6):2596-9.

31 Mahon RT, Regis DP. Decompression and Decompression Sickness. Compr Physiol. 2014;4:1157-75.

32 Wilmshurst PT, Byrne JC, Webb-Peploe MM. Neurological decompression sickness. Lancet. 1989;1(8640):731-6.

33 Dick AP Jr, Broome JR, Hayward IJ. Acute neurologic decompression illness in pigs: lesions of the spinal cord and brain. Lab Anim Sci. 1997;47(5):50-7.

34 Francis TJR, Dutka AJ. Pathophysiology of decompression sickness. In: Bove AA, Davis JC, eds. Diving Medicine. 4th ed. Philadelphia: Saunders; 2004.

35 Dunford RG, Vann RD, Gerth WA, et al. The incidence of venous gas emboli in recreational diving. Undersea Hyperb Med. 2002;29(4):247-59.

36 Hallenbeck JM, Bove AA, Elliott DH. Mechanisms underlying spinal cord damage in decompression sickness. Neurology. 1975;25(4):308-16.

37 Nossum V, Koteng S, Brubakk AO. Endothelial damage by bubbles in the pulmonary artery of the pig. Undersea Hyperb Med. 1999;26(1):1-8.

38 Brunner FP, Frick PG, Bühlmann AA. Post-decompression shock due to extravasation of plasma. Lancet. 1964;1(7343):1071-3.

39 Hutter CD. Dysbaric osteonecrosis: a reassessment and hypothesis. Med Hypotheses. 2000;54(4):585-90.

40 Sobolewski P, Kandel J, Klinger AL, Eckmann DM. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores. Am J Physiol Cell Physiol. 2011;301(3):C679-86.

41 Sobolewski P, Kandel J, Eckmann DM. Air bubble contact with endothelial cells causes a calcium-independent loss in mitochondrial membrane potential. PLoS One. 2012;7(10):e47254.

42 Thom SR, Bhopale VM, Hu J, Yang M. Increased carbon dioxide levels stimulate neutrophils to produce microparticles and activate the nucleotide-binding domain-like receptor 3 inflammasome. Free Radic Biol Med. 2017;106:406-16.

43 Martin JD, Thom SR. Vascular leukocyte sequestration in decompression sickness and prophylactic hyperbaric oxygen therapy in rats. Aviat Space Environ Med. 2002;73(6):565-9.

44 Helps SC, Gorman DF. Air embolism of the brain in rabbits pretreated with mechlorethamine. Stroke. 1991;22(3):351-4.

45 Thom SR, Bhopale VM, Hu J, Yang M. Inflammatory responses to acute elevations of carbon dioxide in mice. J Appl Physiol. 2017;123(2):297-302.

46 Thom SR, Yang M, Bhopale VM, Huang S, Milovanova TN. Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries. J Appl Physiol. 2011;110(2):340-51.

47 Thom SR, Yang M, Bhopale VM, Milovanova TN. Microparticle enlargement and altered surface proteins after air decompression are associated with inflammatory vascular injuries. J Appl Physiol. 2012;112(1):204-11.

48 Yang M, Bhopale VM, Thom SR. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophyseal terminal action potential broadening. J Appl Physiol. 2013;115(10):1481-6.

49 Thorsen T, Lie RT, Holmsen H. Induction of platelet aggregation in vitro by microbubbles of nitrogen. Undersea Biomed Res. 1989;16(6):453-64.

50 Pontier JM, Vallée N, Bourdon L. Bubble-induced platelet aggregation in a rat model of decompression sickness. J Appl Physiol. 2009;107(6):1825-9.

51 Philp RB. A review of blood changes associated with compression-decompression: relationship to decompression sickness. Undersea Biomed Res. 1974;1(2):117-50.

52 Lambrechts K, Pontier JM, Mazur A, et al. Mechanism of action of antiplatelet drugs on decompression sickness in rats: a protective effect of anti-GPIIbIIIa therapy. J Appl Physiol. 2015;118(10):1234-9.

53 Ward CA, Koheil A, McCullough D, Johnson WR, Fraser WD. Activation of complement at plasma-air or serum-air interface of rabbits. J Appl Physiol. 1986;60(5):1651-8.

54 Ward CA, McCullough D, Fraser WD. Relation between complement activation and susceptibility to decompression sickness. J Appl Physiol. 1987;62(3):1160-6.

55 Nyquist P, Ball R, Sheridan MJ. Complement levels before and after dives with a high risk of DCS. Undersea Hyperb Med. 2007;34(3):191-7.

56 Moon RE, Camporesi EM, Kisslo JA. Patent foramen ovale and decompression sickness in divers. Lancet. 1989;1(8637):513-4.

57 Germonpré P, Dendale P, Unger P, Balestra C. Patent foramen ovale and decompression sickness in sports divers. J Appl Physiol. 1998;84(5):1622-6.

58 Bove AA. Risk of decompression sickness with patent foramen ovale. Undersea Hyperb Med. 1998;25(3):175-8.

59 Thom SR, Bhopale VM, Yang M. Neutrophils generate microparticles during exposure to inert gases due to cytoskeletal oxidative stress. J Biol Chem. 2014;289(27):18831-45.

60 Brubakk AO, Duplančić D, Valič Z, et al. A single air dive reduces arterial endothelial function in man. J Physiol. 2005;566(Pt 3):901-6.

61 Mollerløkken A, Berge VJ, Jørgensen A, Wisløff U, Brubakk AO. Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs. J Appl Physiol. 2006;101(6):1541-5.

62 Dujic Z, Palada I, Valic Z, et al. Exogenous nitric oxide and bubble formation in divers. Med Sci Sports Exerc. 2006;38(8):1432-5.

63 Zhang J, Fife CE, Currie MS, Moon RE, Piantadosi CA. Spinal cord decompression sickness: murine model evaluation of circulatory and inflammatory components. Undersea Hyperb Med. 1997;24(4):287-95.

64 Mitchell SJ, Doolette DJ. Pathophysiology of inner ear decompression sickness: potential role of the persistent foramen ovale. Diving Hyperb Med. 2013;43(1):7-12.

Quality in Sport

Downloads

  • PDF

Published

2026-01-18

How to Cite

1.
MIARCZYŃSKI, Jakub, GÓRSKI, Szymon, OKUPNIAREK, Joanna, BARTOSIK, Michalina, JĘTASIEWICZ, Igor, OBORSKI, Michał, OBORSKI, Krzysztof and BARCZYŃSKA, Katarzyna. Pathophysiology of Decompression Sickness: Current Insights and Emerging Models. Quality in Sport. Online. 18 January 2026. Vol. 49, p. 67991. [Accessed 21 January 2026]. DOI 10.12775/QS.2026.49.67991.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 49 (2026)

Section

Medical Sciences

License

Copyright (c) 2026 Jakub Miarczyński, Szymon Górski, Joanna Okupniarek, Michalina Bartosik, Igor Jętasiewicz, Michał Oborski, Krzysztof Oborski, Katarzyna Barczyńska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 26
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

decompression sickness, Decompression illness, Hyperbaric physiology, Inert gas bubbles, Endothelial dysfunction, Microparticles, Nitric oxide, Inflammation, Microcirculation, Diving medicine
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop