Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Liraglutide – Effects on Lean Body Mass, Muscle Mass and Prevention of Muscle Loss. A Comprehensive Literature Review
  • Home
  • /
  • Liraglutide – Effects on Lean Body Mass, Muscle Mass and Prevention of Muscle Loss. A Comprehensive Literature Review
  1. Home /
  2. Archives /
  3. Vol. 49 (2026) /
  4. Medical Sciences

Liraglutide – Effects on Lean Body Mass, Muscle Mass and Prevention of Muscle Loss. A Comprehensive Literature Review

Authors

  • Michał Oborski Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun https://orcid.org/0009-0009-6170-6756
  • Krzysztof Oborski https://orcid.org/0009-0004-4366-6897
  • Szymon Górski https://orcid.org/0009-0006-1411-6524
  • Joanna Okupniarek https://orcid.org/0009-0007-2446-4810
  • Maria Ochwat https://orcid.org/0009-0009-3789-9500
  • Michalina Bartosik https://orcid.org/0009-0008-8541-1998
  • Igor Jętasiewicz https://orcid.org/0009-0008-3351-6392
  • Jakub Miarczyński https://orcid.org/0009-0004-5746-4786
  • Paweł Piechocki https://orcid.org/0009-0004-1004-4987
  • Katarzyna Barczyńska https://orcid.org/0009-0005-1199-0980

DOI:

https://doi.org/10.12775/QS.2026.49.67959

Keywords

liraglutide, GLP-1 receptor agonist, muscle mass loss, lean body mass, body composition

Abstract

Introduction and Purpose. Obesity is a major global health challenge, requiring effective long-term treatments. Liraglutide, a GLP-1 agonist, is effective for weight loss and reducing visceral fat. However, its impact on lean body mass (LBM) and muscle mass is crucial, as their loss can lead to sarcopenia, metabolic impairment, and weight regain. Therefore, this literature review systematically analyses liraglutide's effects on LBM and muscle mass in obesity and/or type 2 diabetes, and presents strategies to minimise potential muscle loss during therapy.

Materials and methods. A systematic review of the scientific literature was conducted. Literature available in the PubMed and Google Scholar databases was searched using keywords.

Results. The findings from clinical trials are not definitive. While several studies report a statistically significant loss of lean body mass (LBM), it remains proportionally smaller than fat loss and may constitute up to 40% of total weight reduction. Conversely, other studies—including the most recent ones—indicate that liraglutide primarily reduces adipose tissue. This effect preserves LBM and can enhance muscle quality by reducing intramuscular fat. The observed absolute decrease in LBM appears strongly correlated with total weight loss, implying it is a consequence of weight reduction itself rather than a specific drug-induced catabolic effect. Preliminary data also suggest liraglutide may have a direct anabolic and protective effect on skeletal muscle via modulation of signalling pathways. To mitigate muscle loss, pharmacotherapy should be combined with non-pharmacological interventions, such as a high-protein diet (1.2–1.6 g/kg bw/day) and regular resistance training. Combination therapies including anabolic agents also represent a promising approach.

References

1. Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129, S102-38, doi:10.1161/01.cir.0000437739.71477.ee.

2. McPake, B. Overweight, Obesity and Diabetes: Global Trends and a Better Future? Health Syst Reform 2025, 11, 2518797, doi:10.1080/23288604.2025.2518797.

3. GBD 2019 Diseases and Injuries Collaborators Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222, doi:10.1016/S0140-6736(20)30925-9.

4. Bannuru, R.R.; ADA Professional Practice Committee (PPC) Introduction and Methodology: Standards of Care in Overweight and Obesity-2025. BMJ Open Diabetes Res Care 2025, 13, doi:10.1136/bmjdrc-2025-004928.

5. Forner, P.; Hocking, S. Pharmacotherapy for the Management of Overweight and Obesity. Aust J Gen Pract 2025, 54, 196–201, doi:10.31128/AJGP-09-24-7411.

6. Perdomo, C.M.; Cohen, R. V; Sumithran, P.; Clément, K.; Frühbeck, G. Contemporary Medical, Device, and Surgical Therapies for Obesity in Adults. The Lancet 2023, 401, 1116–1130, doi:10.1016/S0140-6736(22)02403-5.

7. Iqbal, J.; Wu, H.; Hu, N.; Zhou, Y.; Li, L.; Xiao, F.; Wang, T.; Jiang, H.; Xu, S.; Huang, B.; et al. Effect of Glucagon‐like Peptide‐1 Receptor Agonists on Body Weight in Adults with Obesity without Diabetes Mellitus—a Systematic Review and Meta‐analysis of Randomized Control Trials. Obesity Reviews 2022, 23, doi:10.1111/obr.13435.

8. Alkhezi, O.S.; Alahmed, A.A.; Alfayez, O.M.; Alzuman, O.A.; Almutairi, A.R.; Almohammed, O.A. Comparative Effectiveness of Glucagon‐like Peptide‐1 Receptor Agonists for the Management of Obesity in Adults without Diabetes: A Network Meta‐analysis of Randomized Clinical Trials. Obesity Reviews 2023, 24, doi:10.1111/obr.13543.

9. Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016, 375, 311–322, doi:10.1056/NEJMoa1603827.

10. Locatelli, J.C.; Costa, J.G.; Haynes, A.; Naylor, L.H.; Fegan, P.G.; Yeap, B.B.; Green, D.J. Incretin-Based Weight Loss Pharmacotherapy: Can Resistance Exercise Optimize Changes in Body Composition? Diabetes Care 2024, 47, 1718–1730, doi:10.2337/dci23-0100.

11. Wen, J.; Ansari, U.; Shehabat, M.; Ansari, Z.; Syed, B.; Razick, A.; Razick, D.; Akhtar, M.; Frezza, E. The Potential of SARMs and Antimyostatin Agents in Addressing Lean Body Mass Loss From GLP-1 Agonists: A Literature Review. J Diabetes 2025, 17, e70119, doi:10.1111/1753-0407.70119.

12. Han, T.S.; Wu, F.C.W.; Lean, M.E.J. Obesity and Weight Management in the Elderly: A Focus on Men. Best Pract Res Clin Endocrinol Metab 2013, 27, 509–525, doi:10.1016/j.beem.2013.04.012.

13. Cadegiani, F.A.; Diniz, G.C.; Alves, G. Aggressive Clinical Approach to Obesity Improves Metabolic and Clinical Outcomes and Can Prevent Bariatric Surgery: A Single Center Experience. BMC Obes 2017, 4, 9, doi:10.1186/s40608-017-0147-3.

14. Astrup, A.; Carraro, R.; Finer, N.; Harper, A.; Kunesova, M.; Lean, M.E.J.; Niskanen, L.; Rasmussen, M.F.; Rissanen, A.; Rössner, S.; et al. Safety, Tolerability and Sustained Weight Loss over 2 Years with the Once-Daily Human GLP-1 Analog, Liraglutide. Int J Obes (Lond) 2012, 36, 843–854, doi:10.1038/ijo.2011.158.

15. Schmidt, P.H.S.; Pasqualotto, E.; Dos Santos, H.V.; de Souza, L.S.N.; Dos Santos, B.E.; Chavez, M.P.; Ferreira, R.O.M.; Hohl, A.; Ronsoni, M.F.; van de Sande-Lee, S. Effects of Liraglutide on Body Composition in People Living with Obesity or Overweight: A Systematic Review. Obes Res Clin Pract 2025, 19, 11–18, doi:10.1016/j.orcp.2025.01.009.

16. Bhandarkar, A.; Bhat, S.; Kapoor, N. Effect of GLP-1 Receptor Agonists on Body Composition. Curr Opin Endocrinol Diabetes Obes 2025, 32, 279–285, doi:10.1097/MED.0000000000000934.

17. Kadouh, H.; Chedid, V.; Halawi, H.; Burton, D.D.; Clark, M.M.; Khemani, D.; Vella, A.; Acosta, A.; Camilleri, M. GLP-1 Analog Modulates Appetite, Taste Preference, Gut Hormones, and Regional Body Fat Stores in Adults with Obesity. J Clin Endocrinol Metab 2020, 105, 1552–1563, doi:10.1210/clinem/dgz140.

18. Feng, W.-H.; Bi, Y.; Li, P.; Yin, T.-T.; Gao, C.-X.; Shen, S.-M.; Gao, L.-J.; Yang, D.-H.; Zhu, D.-L. Effects of Liraglutide, Metformin and Gliclazide on Body Composition in Patients with Both Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Randomized Trial. J Diabetes Investig 2019, 10, 399–407, doi:10.1111/jdi.12888.

19. Pandey, A.; Patel, K. V; Segar, M.W.; Ayers, C.; Linge, J.; Leinhard, O.D.; Anker, S.D.; Butler, J.; Verma, S.; Joshi, P.H.; et al. Effect of Liraglutide on Thigh Muscle Fat and Muscle Composition in Adults with Overweight or Obesity: Results from a Randomized Clinical Trial. J Cachexia Sarcopenia Muscle 2024, 15, 1072–1083, doi:10.1002/jcsm.13445.

20. Neeland, I.J.; Linge, J.; Birkenfeld, A.L. Changes in Lean Body Mass with Glucagon-like Peptide-1-Based Therapies and Mitigation Strategies. Diabetes Obes Metab 2024, 26 Suppl 4, 16–27, doi:10.1111/dom.15728.

21. Chavez, A.M.; Carrasco Barria, R.; León-Sanz, M. Nutrition Support Whilst on Glucagon-like Peptide-1 Based Therapy. Is It Necessary? Curr Opin Clin Nutr Metab Care 2025, 28, 351–357, doi:10.1097/MCO.0000000000001130.

22. le Roux, C.W.; Astrup, A.; Fujioka, K.; Greenway, F.; Lau, D.C.W.; Van Gaal, L.; Ortiz, R.V.; Wilding, J.P.H.; Skjøth, T. V; Manning, L.S.; et al. 3 Years of Liraglutide versus Placebo for Type 2 Diabetes Risk Reduction and Weight Management in Individuals with Prediabetes: A Randomised, Double-Blind Trial. Lancet 2017, 389, 1399–1409, doi:10.1016/S0140-6736(17)30069-7.

23. Mechanick, J.I.; Butsch, W.S.; Christensen, S.M.; Hamdy, O.; Li, Z.; Prado, C.M.; Heymsfield, S.B. Strategies for Minimizing Muscle Loss during Use of Incretin-Mimetic Drugs for Treatment of Obesity. Obes Rev 2025, 26, e13841, doi:10.1111/obr.13841.

24. Nuijten, M.A.H.; Eijsvogels, T.M.H.; Monpellier, V.M.; Janssen, I.M.C.; Hazebroek, E.J.; Hopman, M.T.E. The Magnitude and Progress of Lean Body Mass, Fat-Free Mass, and Skeletal Muscle Mass Loss Following Bariatric Surgery: A Systematic Review and Meta-Analysis. Obes Rev 2022, 23, e13370, doi:10.1111/obr.13370.

25. Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31, doi:10.1093/ageing/afy169.

26. Ruiz, J.R.; Sui, X.; Lobelo, F.; Morrow, J.R.; Jackson, A.W.; Sjöström, M.; Blair, S.N. Association between Muscular Strength and Mortality in Men: Prospective Cohort Study. BMJ 2008, 337, a439, doi:10.1136/bmj.a439.

27. Tyrovolas, S.; Panagiotakos, D.; Georgousopoulou, E.; Chrysohoou, C.; Tousoulis, D.; Haro, J.M.; Pitsavos, C. Skeletal Muscle Mass in Relation to 10 Year Cardiovascular Disease Incidence among Middle Aged and Older Adults: The ATTICA Study. J Epidemiol Community Health (1978) 2020, 74, 26–31, doi:10.1136/jech-2019-212268.

28. Małecki, M.T.; Batterham, R.L.; Sattar, N.; Levine, J.A.; Rodríguez, Á.; Bergman, B.K.; Wang, H.; Ghimpeteanu, G.; Lee, C.J. Predictors of ≥15% Weight Reduction and Associated Changes in Cardiometabolic Risk Factors With Tirzepatide in Adults With Type 2 Diabetes in SURPASS 1-4. Diabetes Care 2023, 46, 2292–2299, doi:10.2337/dc23-1135.

29. Schmidt, S.; Frandsen, C.S.; Dejgaard, T.F.; Vistisen, D.; Halldórsson, T.; Olsen, S.F.; Jensen, J.-E.B.; Madsbad, S.; Andersen, H.U.; Nørgaard, K. Liraglutide Changes Body Composition and Lowers Added Sugar Intake in Overweight Persons with Insulin Pump-Treated Type 1 Diabetes. Diabetes Obes Metab 2022, 24, 212–220, doi:10.1111/dom.14567.

30. Silver, H.J.; Olson, D.; Mayfield, D.; Wright, P.; Nian, H.; Mashayekhi, M.; Koethe, J.R.; Niswender, K.D.; Luther, J.M.; Brown, N.J. Effect of the Glucagon-like Peptide-1 Receptor Agonist Liraglutide, Compared to Caloric Restriction, on Appetite, Dietary Intake, Body Fat Distribution and Cardiometabolic Biomarkers: A Randomized Trial in Adults with Obesity and Prediabetes. Diabetes Obes Metab 2023, 25, 2340–2350, doi:10.1111/dom.15113.

31. Pujol Calafat, A.; Nicolau, J.; Gil, A.; Blanco Anesto, J. [The GLP-1 Analogue Battle: Effects of Semaglutide 0,5 Mg/Weekly versus Liraglutide 3 Mg/Daily on Anthropometric Parameters after 3 Months in a Real World-Scenario]. Nutr Hosp 2024, 41, 1224–1230, doi:10.20960/nh.05244.

32. Harder, H.; Nielsen, L.; Tu, D.T.T.; Astrup, A. The Effect of Liraglutide, a Long-Acting Glucagon-like Peptide 1 Derivative, on Glycemic Control, Body Composition, and 24-h Energy Expenditure in Patients with Type 2 Diabetes. Diabetes Care 2004, 27, 1915–1921, doi:10.2337/diacare.27.8.1915.

33. Ghanim, H.; Batra, M.; Green, K.; Abuaysheh, S.; Hejna, J.; Makdissi, A.; Borowski, R.; Kuhadiya, N.D.; Chaudhuri, A.; Dandona, P. Liraglutide Treatment in Overweight and Obese Patients with Type 1 Diabetes: A 26-Week Randomized Controlled Trial; Mechanisms of Weight Loss. Diabetes Obes Metab 2020, 22, 1742–1752, doi:10.1111/dom.14090.

34. Li, C.-J.; Yu, Q.; Yu, P.; Yu, T.-L.; Zhang, Q.-M.; Lu, S.; Yu, D.-M. Changes in Liraglutide-Induced Body Composition Are Related to Modifications in Plasma Cardiac Natriuretic Peptides Levels in Obese Type 2 Diabetic Patients. Cardiovasc Diabetol 2014, 13, 36, doi:10.1186/1475-2840-13-36.

35. Santini, S.; Vionnet, N.; Pasquier, J.; Gonzalez-Rodriguez, E.; Fraga, M.; Pitteloud, N.; Favre, L. Marked Weight Loss on Liraglutide 3.0 Mg: Real-Life Experience of a Swiss Cohort with Obesity. Obesity (Silver Spring) 2023, 31, 74–82, doi:10.1002/oby.23596.

36. Park, J.S.; Kwon, J.; Choi, H.J.; Lee, C. Clinical Effectiveness of Liraglutide on Weight Loss in South Koreans: First Real-World Retrospective Data on Saxenda in Asia. Medicine 2021, 100, e23780, doi:10.1097/MD.0000000000023780.

37. Grannell, A.; Martin, W.P.; Dehestani, B.; Al-Najim, W.; Murphy, J.C.; le Roux, C.W. Liraglutide Does Not Adversely Impact Fat-Free Mass Loss. Obesity (Silver Spring) 2021, 29, 529–534, doi:10.1002/oby.23098.

38. Capristo, E.; Panunzi, S.; De Gaetano, A.; Raffaelli, M.; Guidone, C.; Iaconelli, A.; L’Abbate, L.; Birkenfeld, A.L.; Bellantone, R.; Bornstein, S.R.; et al. Intensive Lifestyle Modifications with or without Liraglutide 3mg vs. Sleeve Gastrectomy: A Three-Arm Non-Randomised, Controlled, Pilot Study. Diabetes Metab 2018, 44, 235–242, doi:10.1016/j.diabet.2017.12.007.

39. Blanco Anesto, J.; Nicolau, J. [Changes in Weight, Body Composition, Metabolic Parameters and Vitamin D in Subjects with Grade 3 and 4 Obesity Treated with Liraglutide 3 Mg]. Nutr Hosp 2024, 41, 1003–1009, doi:10.20960/nh.05267.

40. Song, J.-E.; Ko, H.-J.; Kim, A.-S. Comparison of the Efficacy of Anti-Obesity Medications in Real-World Practice. Drug Des Devel Ther 2024, 18, 845–858, doi:10.2147/DDDT.S445415.

41. Ishii, S.; Nagai, Y.; Sada, Y.; Fukuda, H.; Nakamura, Y.; Matsuba, R.; Nakagawa, T.; Kato, H.; Tanaka, Y. Liraglutide Reduces Visceral and Intrahepatic Fat Without Significant Loss of Muscle Mass in Obese Patients With Type 2 Diabetes: A Prospective Case Series. J Clin Med Res 2019, 11, 219–224, doi:10.14740/jocmr3647.

42. Perna, S.; Guido, D.; Bologna, C.; Solerte, S.B.; Guerriero, F.; Isu, A.; Rondanelli, M. Liraglutide and Obesity in Elderly: Efficacy in Fat Loss and Safety in Order to Prevent Sarcopenia. A Perspective Case Series Study. Aging Clin Exp Res 2016, 28, 1251–1257, doi:10.1007/s40520-015-0525-y.

43. Yu, D.N.; Wang, L.J.; Cheng, B.; Li, M.; Pan, Q.; Guo, L.X. [The Effects of Liraglutide on Body Composition and Muscle Strength in Adult Obese Patients with Type 2 Diabetes Mellitus]. Zhonghua Nei Ke Za Zhi 2021, 60, 982–986, doi:10.3760/cma.j.cn112138-20210205-00105.

44. Gurjar, A.A.; Kushwaha, S.; Chattopadhyay, S.; Das, N.; Pal, S.; China, S.P.; Kumar, H.; Trivedi, A.K.; Guha, R.; Chattopadhyay, N.; et al. Long Acting GLP-1 Analog Liraglutide Ameliorates Skeletal Muscle Atrophy in Rodents. Metabolism 2020, 103, 154044, doi:10.1016/j.metabol.2019.154044.

45. Koceva, A.; Janež, A.; Jensterle, M. Impact of Incretin-Based Therapy on Skeletal Muscle Health. Medicina (Kaunas) 2025, 61, doi:10.3390/medicina61091691.

46. Xiang, J.; Qin, L.; Zhong, J.; Xia, N.; Liang, Y. GLP-1RA Liraglutide and Semaglutide Improves Obesity-Induced Muscle Atrophy via SIRT1 Pathway. Diabetes Metab Syndr Obes 2023, 16, 2433–2446, doi:10.2147/DMSO.S425642.

47. Uchiyama, S.; Sada, Y.; Mihara, S.; Sasaki, Y.; Sone, M.; Tanaka, Y. Oral Semaglutide Induces Loss of Body Fat Mass Without Affecting Muscle Mass in Patients With Type 2 Diabetes. J Clin Med Res 2023, 15, 377–383, doi:10.14740/jocmr4987.

48. Henney, A.E.; Wilding, J.P.H.; Alam, U.; Cuthbertson, D.J. Obesity Pharmacotherapy in Older Adults: A Narrative Review of Evidence. Int J Obes (Lond) 2025, 49, 369–380, doi:10.1038/s41366-024-01529-z.

49. Linge, J.; Birkenfeld, A.L.; Neeland, I.J. Muscle Mass and Glucagon-Like Peptide-1 Receptor Agonists: Adaptive or Maladaptive Response to Weight Loss? Circulation 2024, 150, 1288–1298, doi:10.1161/CIRCULATIONAHA.124.067676.

50. Noronha, J.C.; Van Gaal, L.F.; Neeland, I.J.; Fitch, A.; Pfeiffer, A.F.; Chiavaroli, L.; Kendall, C.W.; Sievenpiper, J.L. Optimizing GLP-1 Therapies for Obesity and Diabetes Management. Obesity pillars 2025, 16, 100222, doi:10.1016/j.obpill.2025.100222.

51. Tuccinardi, D.; Masi, D.; Watanabe, M.; Zanghi Buffi, V.; De Domenico, F.; Berti, S.; Cipriani, V.; Manco, M.; Manfrini, S.; Pagotto, U. Precision Obesity Medicine: A Phenotype-Guided Framework for Pharmacologic Therapy across the Lifespan. J Endocrinol Invest 2025, 48, 2761–2798, doi:10.1007/s40618-025-02700-7.

52. Bosomworth, N.J. New Drugs for Weight Loss: Why Change in Body Composition Matters and Why Nutrition and Exercise Remain Paramount. Can Fam Physician 2025, 71, 705–714, doi:10.46747/cfp.711112705.

53. Mozaffarian, D.; Agarwal, M.; Aggarwal, M.; Alexander, L.; Apovian, C.M.; Bindlish, S.; Bonnet, J.; Butsch, W.S.; Christensen, S.; Gianos, E.; et al. Nutritional Priorities to Support GLP-1 Therapy for Obesity: A Joint Advisory from the American College of Lifestyle Medicine, the American Society for Nutrition, the Obesity Medicine Association, and The Obesity Society. Am J Clin Nutr 2025, 122, 344–367, doi:10.1016/j.ajcnut.2025.04.023.

54. Zaitoon, H.; Wauters, A.D.; Rodriguez, L.M.; Lynch, J.L. Beyond Weight Loss: Optimizing GLP-1 Receptor Agonist Use in Children. Children (Basel) 2025, 12, doi:10.3390/children12111427.

55. Žižka, O.; Haluzík, M.; Jude, E.B. Pharmacological Treatment of Obesity in Older Adults. Drugs Aging 2024, 41, 881–896, doi:10.1007/s40266-024-01150-9.

56. Jiang, N.; Yin, J.; Lawrence, N.; Meng, J.; Maeyens, L.T.; Xu, Z.; Li, X.; Ekane, M.; Chaudhary, A.; Cao, P.; et al. Repeated Withdrawal of a GLPR Agonist Induces Hyperleptinemia and Deteriorates Metabolic Health in Obese Aging UM-HET3 Mice. Aging Cell 2025, 24, e70210, doi:10.1111/acel.70210.

57. Prokopidis, K.; Daly, R.M.; Suetta, C. Weighing the Risk of GLP-1 Treatment in Older Adults: Should We Be Concerned about Sarcopenic Obesity? J Nutr Health Aging 2025, 29, 100652, doi:10.1016/j.jnha.2025.100652.

Quality in Sport

Downloads

  • PDF

Published

2026-01-19

How to Cite

1.
OBORSKI, Michał, OBORSKI, Krzysztof, GÓRSKI, Szymon, OKUPNIAREK, Joanna, OCHWAT, Maria, BARTOSIK, Michalina, JĘTASIEWICZ, Igor, MIARCZYŃSKI, Jakub, PIECHOCKI, Paweł and BARCZYŃSKA, Katarzyna. Liraglutide – Effects on Lean Body Mass, Muscle Mass and Prevention of Muscle Loss. A Comprehensive Literature Review. Quality in Sport. Online. 19 January 2026. Vol. 49, p. 67959. [Accessed 19 January 2026]. DOI 10.12775/QS.2026.49.67959.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 49 (2026)

Section

Medical Sciences

License

Copyright (c) 2026 Michał Oborski, Krzysztof Oborski, Szymon Górski, Joanna Okupniarek, Maria Ochwat, Michalina Bartosik, Igor Jętasiewicz, Jakub Miarczyński, Paweł Piechocki, Katarzyna Barczyńska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 6
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

liraglutide, GLP-1 receptor agonist, muscle mass loss, lean body mass, body composition
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop