Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Detection of Bone Fractures by AI Algorithms: Comparison of the Effectiveness of Recognition of Changes by a Doctor and AI Models
  • Home
  • /
  • Detection of Bone Fractures by AI Algorithms: Comparison of the Effectiveness of Recognition of Changes by a Doctor and AI Models
  1. Home /
  2. Archives /
  3. Vol. 49 (2026) /
  4. Medical Sciences

Detection of Bone Fractures by AI Algorithms

Comparison of the Effectiveness of Recognition of Changes by a Doctor and AI Models

Authors

  • Maria Kasprzak Medical University of Lublin https://orcid.org/0009-0005-4201-2231
  • Damian Osiński https://orcid.org/0009-0005-5197-3173
  • Zuzanna Kawa Uniwersytet Medyczny w Lublinie https://orcid.org/0009-0009-2579-2888
  • Aleksandra Jędrzejewska Uniwersytet Medyczny w Lublinie https://orcid.org/0009-0002-8118-1810
  • Aleksandra Jureczko Uniwersytet Medyczny w Lublinie https://orcid.org/0009-0005-5562-2637
  • Klaudia Kleczaj Uniwersytet Medyczny w Lublinie https://orcid.org/0000-0002-2534-6863
  • Valentyna Levadna Uniwersytet Medyczny w Lublinie https://orcid.org/0009-0007-0287-7112
  • Julia Jaworowska Uniwersytet Medyczny w Lublinie https://orcid.org/0009-0006-5770-7578
  • Gabriela Babiarz Uniwersytet Medyczny w Lublinie https://orcid.org/0009-0002-2715-6470
  • Julia Kanarszczuk Uniwersytet Medyczny w Lublinie https://orcid.org/0009-0001-7482-2379

DOI:

https://doi.org/10.12775/QS.2026.49.67874

Keywords

ai, prediction, Artificial Intelligence, fractures, AI algorithms, Machine Learning, Medical Image Analysis, Fracture Detection, Traumatology, Trauma AI, AI Models, Fracture Recognition, Specificity, Radiology, Orthopedics, AI in Orthopedics, AI in Radiology, X-ray Images, AI in Medicine, CT, Detection

Abstract

Introduction. Artificial intelligence is playing an increasingly significant role in medicine and has the potential to assist not only specialists but also other medical professionals in detecting fractures based on X-ray and CT scans. Algorithms based on deep learning are particularly useful in radiology and orthopedics.

Purpose of the study. Summary of publicly available publications and studies comparing the effectiveness of AI and physicians in recognizing bone fractures.

Materials and methodology. A review of the literature available on PubMed, Google Scholar and Scopus was conducted.

Conclusions. The use of artificial intelligence algorithms can reduce the time required for fracture detection to as little as one minute. AI is better at identifying fractures that are difficult for humans to detect but struggles with more obvious and visible fractures. Artificial intelligence has the same or lower sensitivity and specificity in fracture detection as a specialist doctor but achieves higher accuracy compared to a resident doctor or a general practitioner.

Summary. Based on the analyzed studies, it can be observed that artificial intelligence  will prove useful as an aid; a suggestion in diagnosis for a young doctor, but does not replace specialist doctors, who achieve higher accuracy in detecting fractures on X-rays and CT scans. Furthermore, it is worth reconsidering the reanalysis of existing studies and comparing AI results not only with human knowledge but also with CT scans, as they are considered more reliable.

References

1.Myers TG, Ramkumar PN, Ricciardi BF, Urish KL, Kipper J, Ketonis C. Artificial Intelligence and Orthopaedics: An Introduction for Clinicians. J Bone Joint Surg Am. 2020;102(9):830-840. doi: https://doi.org/10.2106/JBJS.19.01128 PMID: 32379124.

2.Kutbi M. Artificial Intelligence-Based Applications for Bone Fracture Detection Using Medical Images: A Systematic Review. Diagnostics (Basel). 2024;14(17):1879. doi: https://doi.org/10.3390/diagnostics14171879 PMID: 39272664.

3.Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-243. doi: https://doi.org/10.1136/svn-2017-000101 PMID: 29507784.

4.Howard AG, Zhu M, Chen B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv. 2017. doi: https://doi.org/10.48550/arXiv.1704.04861

5.Alam A, Al-Shamayleh A, Thalji N, et al. Novel transfer learning based bone fracture detection using radiographic images. BMC Med Imaging. 2025;25. doi: https://doi.org/10.1186/s12880-024-01546-4

6.Meetschen M, Salhöfer L, Beck N, et al. AI-Assisted X-ray Fracture Detection in Residency Training: Evaluation in Pediatric and Adult Trauma Patients. Diagnostics (Basel). 2024;14(6):596. doi: https://doi.org/10.3390/diagnostics14060596

7.Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol. 2019;48(2):239-244. doi: https://doi.org/10.1007/s00256-018-3016-3 PMID: 29955910.

8.Langerhuizen DWG, Janssen SJ, Mallee WH, et al. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review. Clin Orthop Relat Res. 2019;477(11):2482-2491. doi: https://doi.org/10.1097/CORR.0000000000000848

9.Chung SW, Han SS, Lee JW, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018;89(4):468-473. doi: https://doi.org/10.1080/17453674.2018.1453714 PMID: 29577791.

10.Twinprai N, Boonrod A, Boonrod A, et al. Artificial intelligence (AI) vs. human in hip fracture detection. Heliyon. 2022;8(11):e11266. doi: https://doi.org/10.1016/j.heliyon.2022.e11266 PMID: 36339768.

11.Liu Y, Liu W, Chen H, et al. Artificial intelligence versus radiologist in the accuracy of fracture detection based on computed tomography images: a multi-dimensional, multi-region analysis. Quant Imaging Med Surg. 2023;13(10):6424-6433. doi: https://doi.org/10.21037/qims-23-428 PMID: 37869340.

12.Jacques T, Cardot N, Ventre J, Demondion X, Cotten A. Commercially-available AI algorithm improves radiologists' sensitivity for wrist and hand fracture detection on X-ray, compared to a CT-based ground truth. Eur Radiol. 2024;34(5):2885-2894. doi: https://doi.org/10.1007/s00330-023-10380-1 PMID: 37919408.

13.Liu X, Wu D, Xie H, et al. Clinical evaluation of AI software for rib fracture detection and its impact on junior radiologist performance. Acta Radiol. 2022;63(11):1535-1545. doi: https://doi.org/10.1177/02841851211043839 PMID: 34617809.

14.Langerhuizen DWG, Bulstra AEJ, Janssen SJ, Ring D, Kerkhoffs GMMJ, Jaarsma RL, Doornberg JN. Is Deep Learning On Par with Human Observers for Detection of Radiographically Visible and Occult Fractures of the Scaphoid? Clin Orthop Relat Res. 2020;478(11):2653-2659. doi: https://doi.org/10.1097/CORR.0000000000001318 PMID: 32452927.

15.Pastor M, Dabli D, Lonjon R, et al. Comparison between artificial intelligence solution and radiologist for the detection of pelvic, hip and extremity fractures on radiographs in adult using CT as standard of reference. Diagn Interv Imaging. 2025;106(1):22-27. doi: https://doi.org/10.1016/j.diii.2024.09.004

16.Gleamer [Internet]. BoneView – AI for fracture and bone lesion detection on X-rays. Paris: Gleamer; 2024 [cited 2025 Oct 15]. Available from: https://www.gleamer.ai/solutions/boneview

17.Regnard N-E, Lanseur B, Ventre J, et al. Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays. Eur J Radiol. 2022;154:110447. doi: https://doi.org/10.1016/j.ejrad.2022.110447

18.Pfeifer R, Pape HC. Missed injuries in trauma patients: A literature review. Patient Saf Surg. 2008;2:20. doi: https://doi.org/10.1186/1754-9493-2-20 PMID: 18769448.

19.Ziegner M, Pape J, Lacher M, et al. Real-life benefit of artificial intelligence-based fracture detection in a pediatric emergency department. Eur Radiol. 2025;35(10):5881-5890. doi: https://doi.org/10.1007/s00330-025-11554-9

20.Boudiaf M, Ben Slimane M, El Hassani A, et al. Artificial Intelligence for Fracture Detection in Radiology: A Review. Artif Intell Rev. 2025. doi: https://doi.org/10.1007/s10462-025-11352-1

21.Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artif Intell Healthc. 2020:295-336. doi: https://doi.org/10.1016/B978-0-12-818438-7.00012-5

22.Price WN 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43. doi: https://doi.org/10.1038/s41591-018-0272-7 PMID: 30617335.

Quality in Sport

Downloads

  • PDF

Published

2026-01-18

How to Cite

1.
KASPRZAK, Maria, OSIŃSKI, Damian, KAWA, Zuzanna, JĘDRZEJEWSKA, Aleksandra, JURECZKO, Aleksandra, KLECZAJ, Klaudia, LEVADNA, Valentyna, JAWOROWSKA, Julia, BABIARZ, Gabriela and KANARSZCZUK, Julia. Detection of Bone Fractures by AI Algorithms: Comparison of the Effectiveness of Recognition of Changes by a Doctor and AI Models. Quality in Sport. Online. 18 January 2026. Vol. 49, p. 67874. [Accessed 22 January 2026]. DOI 10.12775/QS.2026.49.67874.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 49 (2026)

Section

Medical Sciences

License

Copyright (c) 2026 Maria Kasprzak, Damian Osiński, Zuzanna Kawa, Aleksandra Jędrzejewska, Aleksandra Jureczko, Klaudia Kleczaj, Valentyna Levadna, Julia Jaworowska, Gabriela Babiarz, Julia Kanarszczuk

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 18
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

ai, prediction, Artificial Intelligence, fractures, AI algorithms, Machine Learning, Medical Image Analysis, Fracture Detection, Traumatology, Trauma AI, AI Models, Fracture Recognition, Specificity, Radiology, Orthopedics, AI in Orthopedics, AI in Radiology, X-ray Images, AI in Medicine, CT, Detection
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop