The Impact of Creatine Supplementation on Physical Function and Brain Health in the Aging Population: A Review Article
DOI:
https://doi.org/10.12775/QS.2026.49.67815Keywords
Creatine, Aging, geriatric, Sarcopenia, muscle strength, bone density, rehabilitation, cognitive function, memory, fall prevention, resistance trainingAbstract
Introduction. Rising global longevity is leading to a significant increase in the proportion of older adults worldwide. Inherent to this aging process are physiological and neurological declines, such as reduced muscle mass, diminished strength, and impaired cognitive functions. As a key driver of cellular energy production, creatine supplementation may represent a promising strategy to mitigate these deficits and preserve functional independence in older adults.
Aim of the study. The aim of this review is to synthesize current evidence on the effects of creatine supplementation on physical performance and cognitive function in older adults.
Materials and methods. A systematic review was executed across the PubMed and Google Scholar platforms. The following keywords were used: creatine, aging, geriatrics, sarcopenia, muscle strength, bone density, rehabilitation, cognitive function, memory, fall prevention, resistance training.
Results. Creatine supplementation improves both physical and mental health in older adults. It aids in the prevention of sarcopenia, the maintenance of muscle mass and strength, may positively influence bone health, and reduces the risk of falls. Additionally, it has a positive impact on cognitive functions, specifically improving memory and mental processing.
Conclusions. Creatine should be considered a key part of nutrition for the geriatric population to support healthy aging. Because it helps both the body and the brain, it is an important tool for improving quality of life. Future research should focus on determining the most effective doses for long-term health.
References
[1] World Health Organization. (2025). Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
[2] Nobili, A., Garattini, S., Mannucci, P. M. (2011). Multiple diseases and polypharmacy in the elderly: Challenges for the internist of the third millennium. Journal of Comorbidity, 1(1), 28–44. https://doi.org/10.15256/joc.2011.1.4
[3] Shafiee, G., Keshtkar, A., Soltani, A., Ahadi, Z., Larijani, B., Heshmat, R. (2017). Prevalence of sarcopenia in the world: A systematic review and meta-analysis of general population studies. Journal of Diabetes & Metabolic Disorders, 16, 21. https://doi.org/10.1186/s40200-017-0302-x
[4] Gupta, A. K., Mishra, S. (2016). Sarcopenia and the syndrome of frailty. Egyptian Journal of Internal Medicine, 28, 133–139. https://doi.org/10.4103/1110-7782.203297
[5] Jost, Z., Kujach, S. (2025). Understanding cognitive decline in aging: Mechanisms and mitigation strategies—A narrative review. Clinical Interventions in Aging, 20, 459–469. https://doi.org/10.2147/CIA.S510670
[6] Martinez-Gomez, D., Bandinelli, S., Del-Panta, V., Patel, K. V., Guralnik, J. M., Ferrucci, L. (2017). Three-year changes in physical activity and decline in physical performance over 9 years of follow-up in older adults: The Invecchiare in Chianti Study. Journal of the American Geriatrics Society, 65(6), 1176–1182. https://doi.org/10.1111/jgs.14788
[7] Oliveira, J. S., Pinheiro, M. B., Fairhall, N., Walsh, S., Chesterfield Franks, T., Kwok, W., Bauman, A., Sherrington, C. (2020). Evidence on physical activity and the prevention of frailty and sarcopenia among older people: A systematic review to inform the World Health Organization Physical Activity Guidelines. Journal of Physical Activity and Health, 17(12), 1247–1258. https://doi.org/10.1123/jpah.2020-0323
[8] Yau, W. W., Kirn, D. R., Rabin, J. S., et al. (2025). Physical activity as a modifiable risk factor in preclinical Alzheimer’s disease. Nature Medicine. https://doi.org/10.1038/s41591-025-03955-6
[9] Meng, X., Zhu, K., Devine, A., Kerr, D. A., Binns, C. W., Prince, R. L. (2009). A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. Journal of Bone and Mineral Research, 24(10), 1827–1834. https://doi.org/10.1359/jbmr.090513
[10] Houston, D. K., Nicklas, B. J., Liu, Y., Han, D. H., Goodpaster, B. H., Hadley, E. C., Visser, M., Tylavsky, F. A., & Newman, A. B. (2008). Dietary protein intake is associated with lean mass change in older community-dwelling adults: The Health, Aging and Body Composition (Health ABC) Study. The American Journal of Clinical Nutrition, 87(1), 150–155. https://doi.org/10.1093/ajcn/87.1.150
[11] Goes-Santos, B. R., Carson, B. P., da Fonseca, G. W. P., & von Haehling, S. (2024). Nutritional strategies for improving sarcopenia outcomes in older adults: A narrative review. Pharmacology Research & Perspectives, 12(5), e070019. https://doi.org/10.1002/prp2.70019
[12] Bonilla, D. A., Kreider, R. B., Stout, J. R., Forero, D. A., Kerksick, C. M., Roberts, M. D., & Rawson, E. S. (2021). Metabolic basis of creatine in health and disease: A bioinformatics-assisted review. Nutrients, 13(4), 1238. https://doi.org/10.3390/nu13041238
[13] Brosnan, J. T., & Brosnan, M. E. (2007). Creatine: Endogenous metabolite, dietary, and therapeutic supplement. Annual Review of Nutrition, 27, 241–261. https://doi.org/10.1146/annurev.nutr.27.061406.093621
[14] Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological Reviews, 80(3), 1107–1213. https://doi.org/10.1152/physrev.2000.80.3.1107
[15] Andres, R. H., Ducray, A. D., Schlattner, U., Wallimann, T., & Widmer, H. R. (2008). Functions and effects of creatine in the central nervous system. Brain Research Bulletin, 76(4), 329–343. https://doi.org/10.1016/j.brainresbull.2008.02.035
[16] Pashayee-Khamene, F., Heidari, Z., Asbaghi, O., Ashtary-Larky, D., Goudarzi, K., Forbes, S. C., Candow, D. G., Bagheri, R., Ghanavati, M., & Dutheil, F. (2024). Creatine supplementation protocols with or without training interventions on body composition: A GRADE-assessed systematic review and dose-response meta-analysis. Journal of the International Society of Sports Nutrition, 21(1), 2380058. https://doi.org/10.1080/15502783.2024.2380058
[17] Wallimann, T., Tokarska-Schlattner, M., & Schlattner, U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino Acids, 40(5), 1271–1296. https://doi.org/10.1007/s00726-011-0877-3
[18] Forbes, S. C., Candow, D. G., Ostojic, S. M., Roberts, M. D., & Chilibeck, P. D. (2021). Meta-analysis examining the importance of creatine ingestion strategies on lean tissue mass and strength in older adults. Nutrients, 13(6), 1912. https://doi.org/10.3390/nu13061912
[19] Wu, S.-H., Chen, K.-L., Hsu, C., Chen, H.-C., Chen, J.-Y., Yu, S.-Y., & Shiu, Y.-J. (2022). Creatine supplementation for muscle growth: A scoping review of randomized clinical trials from 2012 to 2021. Nutrients, 14(6), 1255. https://doi.org/10.3390/nu14061255
[20] Candow, D. G., Ostojic, S. M., Chilibeck, P. D., Longobardi, I., Gualano, B., Tarnopolsky, M. A., Wallimann, T., Moriarty, T., Kreider, R. B., Forbes, S. C., Schlattner, U., & Antonio, J. (2025). Creatine monohydrate supplementation for older adults and clinical populations. Journal of the International Society of Sports Nutrition, 22(Suppl 1), 2534130. https://doi.org/10.1080/15502783.2025.2534130
[21] Devries, M. C., & Phillips, S. M. (2014). Creatine supplementation during resistance training in older adults-a meta-analysis. Medicine & Science in Sports & Exercise, 46(6), 1194–1203. https://doi.org/10.1249/MSS.0000000000000220
[22] Dolan, E., Artioli, G. G., Pereira, R. M. R., & Gualano, B. (2019). Muscular atrophy and sarcopenia in the elderly: Is there a role for creatine supplementation? Biomolecules, 9(11), 642. https://doi.org/10.3390/biom9110642
[23] Chrusch, M. J., Chilibeck, P. D., Chad, K. E., Davison, K. S., & Burke, D. G. (2001). Creatine supplementation combined with resistance training in older men. Medicine & Science in Sports & Exercise, 33(12), 2111–2117. https://doi.org/10.1097/00005768-200112000-00021
[24] Candow, D. G., Forbes, S. C., Chilibeck, P. D., Cornish, S. M., Antonio, J., & Kreider, R. B. (2019). Effectiveness of creatine supplementation on aging muscle and bone: Focus on falls prevention and inflammation. Journal of Clinical Medicine, 8(4), 488. https://doi.org/10.3390/jcm8040488
[25] Gualano, B., Rawson, E. S., Candow, D. G., & Chilibeck, P. D. (2016). Creatine supplementation in the aging population: Effects on skeletal muscle, bone and brain. Amino Acids, 48(8), 1793–1805. https://doi.org/10.1007/s00726-016-2239-7
[26] Forbes, S. C., Chilibeck, P. D., & Candow, D. G. (2018). Creatine supplementation during resistance training does not lead to greater bone mineral density in older humans: A brief meta-analysis. Frontiers in Nutrition, 5, 27. https://doi.org/10.3389/fnut.2018.00027
[27] Chilibeck, P. D., Candow, D. G., Gordon, J. J., Duff, W. R. D., Mason, R., Shaw, K., Taylor-Gjevre, R., Nair, B., & Zello, G. A. (2023). A 2-yr randomized controlled trial on creatine supplementation during exercise for postmenopausal bone health. Medicine & Science in Sports & Exercise, 55(10), 1750–1760. https://doi.org/10.1249/MSS.0000000000003202
[28] Goudarzian, M., Rahimi, M., Karimi, N., Samadi, A., Ajudani, R., Sahaf, R., & Ghavi, S. (2017). Mobility, balance, and muscle strength adaptations to short-term whole body vibration training plus oral creatine supplementation in elderly women. Asian Journal of Sports Medicine, 8(1), e40543. https://doi.org/10.5812/asjsm.40543
[29] Harmon, K. K., Stout, J. R., Fukuda, D. H., Pabian, P. S., Rawson, E. S., & Stock, M. S. (2021). The application of creatine supplementation in medical rehabilitation. Nutrients, 13(6), 1825. https://doi.org/10.3390/nu13061825
[30] Kreider, R. B., & Stout, J. R. (2021). Creatine in health and disease. Nutrients, 13(2), 447. https://doi.org/10.3390/nu13020447
[31] Forbes, S. C., Cordingley, D. M., Cornish, S. M., Gualano, B., Roschel, H., Ostojic, S. M., Rawson, E. S., Roy, B. D., Prokopidis, K., Giannos, P., & Candow, D. G. (2022). Effects of Creatine Supplementation on Brain Function and Health. Nutrients, 14(5), 921. https://doi.org/10.3390/nu14050921.
[32] Wallimann, T., Wyss, M., Brdiczka, D., Nicotera, P., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal, 281(1), 21–40. https://doi.org/10.1042/bj2810021.
[33] Pais, R., Ruano, L., P. Carvalho, O., & Barros, H. (2020). Global Cognitive Impairment Prevalence and Incidence in Community Dwelling Older Adults—A Systematic Review. Geriatrics, 5(4), 84. https://doi.org/10.3390/geriatrics5040084
[34] Prokopidis, K., Giannos, P., Triantafyllidis, K. K., Kechagias, K. S., Forbes, S. C., & Candow, D. G. (2023). Effects of creatine supplementation on memory in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews, 81(4), 416–427. https://doi.org/10.1093/nutrit/nuac064
[35] Dolan, E., Gualano, B., & Roschel, H. (2018). Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. European Journal of Sport Science, 19(3), 1–14. https://doi.org/10.1080/17461391.2018.1500644
[36] McMorris, T., Mielcarz, G., Harris, R. C., Swain, J. P., & Howard, A. (2007). Creatine supplementation and cognitive performance in elderly individuals. Aging, Neuropsychology, and Cognition, 14(5), 517–528. https://doi.org/10.1080/13825580600788100
[37] Ostojic, S. M., Korovljev, D., & Stajer, V. (2021). Dietary creatine and cognitive function in U.S. adults aged 60 years and over. Aging Clinical and Experimental Research, 33, 3269–3274. https://doi.org/10.1007/s40520-021-01857-4
[38] Oliveira, E. F., Forbes, S. C., Borges, E. Q., Machado, L. F., Candow, D. G., & Machado, M. (2023). Association between dietary creatine and visuospatial short-term memory in older adults. Nutrition and Health, 29(4), 731–736. https://doi.org/10.1177/02601060221102273
[39] Smolarek, A. C., McAnulty, S. R., Ferreira, L. H., Cordeiro, G. R., Alessi, A., Rebesco, D. B., Honorato, I. C., Laat, E. F., Mascarenhas, L. P., & Souza-Junior, T. P. (2020). Effect of 16 weeks of strength training and creatine supplementation on strength and cognition in older adults: A pilot study. Journal of Exercise Physiology Online, 23(5), 88–94. https://doi.org/10.31219/osf.io/z6unw
[40] Alves, C. R., Merege Filho, C. A. A., Benatti, F. B., Brucki, S. M., Pereira, R. M. R., Sá Pinto, A. L., Lima, F. R. S., Roschel, H., & Gualano, B. (2013). Creatine supplementation associated or not with strength training upon emotional and cognitive measures in older women: A randomized double-blind study. PLoS ONE, 8(10), e76301. https://doi.org/10.1371/journal.pone.0076301
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Maria Ważny, Agnieszka Gancarz, Agata Żak, Aleksandra Adamczyk, Michał Gut, Joanna Toporowska-Kaźmierak, Marta Sowińska, Miłosz Tworek, Mateusz Banasik, Damian Bezara

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 8
Number of citations: 0